各項均為正數(shù)的數(shù)列{an}中,a1=1,Sn是數(shù)列{an}的前n項和,對任意n∈N*,有2Sn=2pa2n+pan-p(p∈R).
(1)求常數(shù)p的值;
(2)求數(shù)列{an}的通項公式;
(3)記bn=4Snn+3?2n,求數(shù)列{bn}的前n項和Tn.
2
S
n
=
2
p
a
2
n
+
p
a
n
-
p
(
p
∈
R
)
b
n
=
4
S
n
n
+
3
?
2
n
【考點】數(shù)列遞推式;數(shù)列的求和.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:176引用:25難度:0.3
相似題
-
1.設a,b∈R,數(shù)列{an}滿足a1=a,an+1=an2+b,n∈N*,則( )
發(fā)布:2024/12/29 12:30:1組卷:3195引用:9難度:0.4 -
2.設Sn為數(shù)列{an}的前n項和,若
,5an+1=5an+2,則S5=( ?。?/h2>a1=65發(fā)布:2024/12/29 11:0:2組卷:157引用:4難度:0.7 -
3.在數(shù)列{an}中,a1=1,an+1=2an+2n.
(1)設bn=.證明:數(shù)列{bn}是等差數(shù)列;an2n-1
(2)求數(shù)列{an}的通項公式.發(fā)布:2024/12/29 6:30:1組卷:136引用:11難度:0.3