如圖,在平面直角坐標系中,拋物線y=34x2+bx+c與直線AB交于點A(0,-3),B(4,0).

(1)求拋物線的函數(shù)解析式;
(2)點P是直線AB下方拋物線上一點,過點P作y軸的平行線,交AB于點E,過點P作AB的垂線,垂足為點F,求△PEF周長的最大值及此時點P的坐標;
(3)在(2)中△PEF取得最大值的條件下,將該拋物線沿水平方向向左平移3個單位,點Q為點P的對應點,點N為原拋物線對稱軸上一點.在平移后拋物線上確定一點M,使得以點B,Q,M,N為頂點的四邊形是平行四邊形,寫出所有符合條件的點M的坐標,并寫出求解點M的坐標的其中一種情況的過程.
y
=
3
4
x
2
+
bx
+
c
【考點】二次函數(shù)綜合題.
【答案】(1);
(2),;
(3),,;過程見解析.
y
=
3
4
x
2
-
9
4
x
-
3
(2)
36
5
P
(
2
,-
9
2
)
(3)
M
(
13
2
,
693
16
)
M
(
-
7
2
,-
27
16
)
M
(
3
2
,
33
16
)
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:516引用:5難度:0.1
相似題
-
1.拋物線y=ax2-
x+6與x軸交于A、B兩點,與y軸交于點C,直線y=kx+b經(jīng)過點B、C,已知B點坐標為(8,0),點P在拋物線上,設點P的橫坐標為m.114
(1)求拋物線與直線的解析式;
(2)如圖1,連接AC,AP,PC,若△APC是直角三角形,求點P的坐標;
(3)如圖2,若點P在直線BC下方的拋物線上,過點P作PQ⊥BC,垂足為Q,求CQ+PQ的最大值.12發(fā)布:2025/5/22 3:0:1組卷:179引用:2難度:0.3 -
2.綜合與探究:
如圖,拋物線y=x2+bx+c與x軸交于A、B兩點,與y軸交于C點,OA=2,OC=6,連接AC和BC.
(1)求拋物線的解析式;
(2)點E是第四象限內(nèi)拋物線上的動點,連接CE和BE.求△BCE面積的最大值及此時點E的坐標;
(3)若點M是y軸上的動點,在坐標平面內(nèi)是否存在點N,使以點A、C、M、N為頂點的四邊形是菱形?若存在,請直接寫出點N的坐標;若不存在,請說明理由.發(fā)布:2025/5/22 3:0:1組卷:1363引用:12難度:0.4 -
3.如圖,在矩形OABC中,點O為原點,點A的坐標為(0,8),點C的坐標為(6,0).拋物線y=-
x2+bx+c經(jīng)過點A、C,與AB交于點D.49
(1)求拋物線的函數(shù)解析式;
(2)點P為線段BC上一個動點(不與點C重合),點Q為線段AC上一個動點,AQ=CP,連接PQ,設CP=m,△CPQ的面積為S.
①求S關于m的函數(shù)表達式;
②當S最大時,在拋物線y=-x2+bx+c的對稱軸l上,若存在點F,使△DFQ為直角三角形,請直接寫出所有符合條件的點F的坐標;若不存在,請說明理由.49發(fā)布:2025/5/22 3:30:2組卷:9053引用:20難度:0.3