如圖,“趙爽弦圖”由4個(gè)全等的直角三角形所圍成,在Rt△ABC中,AC=b,BC=a,∠ACB=90°,若圖中大正方形的面積為40,小正方形的面積為5,則(a+b)2的值為( ?。?/h1>
【考點(diǎn)】勾股定理的證明.
【答案】A
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/27 14:0:0組卷:1076引用:4難度:0.9
相似題
-
1.利用圖(1)或圖(2)兩個(gè)圖形中的有關(guān)面積的等量關(guān)系都能證明數(shù)學(xué)中一個(gè)十分著名
的定理,這個(gè)定理稱為
發(fā)布:2025/6/21 16:30:1組卷:813引用:10難度:0.7 -
2.歷史上對(duì)勾股定理的一種證法采用了下列圖形:其中兩個(gè)全等的直角三角形邊AE、EB在一條直線上.證明中用到的面積相等關(guān)系是( ?。?/h2>
發(fā)布:2025/6/21 17:0:2組卷:1042引用:15難度:0.7 -
3.“趙爽弦圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國(guó)古代數(shù)學(xué)的驕傲.如圖所示的“趙爽弦圖”是由四個(gè)全等的直角三角形和一個(gè)小正方形拼成的一個(gè)大正方形.設(shè)直角三角形較長(zhǎng)直角邊長(zhǎng)為a,較短直角邊長(zhǎng)為b.若ab=8,大正方形的面積為25,則小正方形的邊長(zhǎng)為( ?。?/h2>
發(fā)布:2025/6/21 17:0:2組卷:8219引用:68難度:0.7