當(dāng)前位置:
人教新版九年級(jí)上冊(cè)《22.1.3 二次函數(shù)y=a(x-h)²+k的圖象和性質(zhì)(二次函數(shù)y=a(x-h)²的圖象和性質(zhì))》2023年同步練習(xí)卷>
試題詳情
如圖,已知直線y=-12x+2與拋物線y=a(x+2)2相交于A、B兩點(diǎn),點(diǎn)A在y軸上,M為拋物線的頂點(diǎn).
(1)請(qǐng)直接寫出點(diǎn)A的坐標(biāo)及該拋物線的解析式;
(2)若P為線段AB上一個(gè)動(dòng)點(diǎn)(A、B兩端點(diǎn)除外),連接PM,設(shè)線段PM的長(zhǎng)為l,點(diǎn)P的橫坐標(biāo)為x,請(qǐng)求出l2與x之間的函數(shù)關(guān)系,并直接寫出自變量x的取值范圍;
(3)在(2)的條件下,線段AB上是否存在點(diǎn)P,使以A、M、P為頂點(diǎn)的三角形是等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
1
2
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/28 8:0:9組卷:467引用:4難度:0.1
相似題
-
1.如圖,對(duì)稱軸為直線x=1的拋物線y=x2-bx+c與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),且OB=OC.
(1)求拋物線的解析式;
(2)拋物線頂點(diǎn)為D,直線BD交y軸于E點(diǎn);
①設(shè)點(diǎn)P為線段BD上一點(diǎn)(點(diǎn)P不與B、D兩點(diǎn)重合),過(guò)點(diǎn)P作x軸的垂線與拋物線交于點(diǎn)F,求△BDF面積的最大值;
②在線段BD上是否存在點(diǎn)Q,使得∠BDC=∠QCE?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.發(fā)布:2025/5/24 9:30:2組卷:191引用:2難度:0.1 -
2.如圖,二次函數(shù)
與x軸交于O(0,0),A(4,0)兩點(diǎn),頂點(diǎn)為C,連接OC、AC,若點(diǎn)B是線段OA上一動(dòng)點(diǎn),連接BC,將△ABC沿BC折疊后,點(diǎn)A落在點(diǎn)A'的位置,線段A'C與x軸交于點(diǎn)D,且點(diǎn)D與O、A點(diǎn)不重合.y=12x2+bx+c
(1)求二次函數(shù)的表達(dá)式;
(2)①求證:△OCD∽△A'BD;
②求的最小值.DBBA發(fā)布:2025/5/24 9:30:2組卷:300引用:2難度:0.1 -
3.如圖,已知拋物線y=ax2+bx+c與x軸交于點(diǎn)A(2,0),B(-4,0),與y軸交于C(0,-3),連接BC.
(1)求拋物線的解析式;
(2)如圖1,點(diǎn)P是直線BC下方拋物線上一點(diǎn),過(guò)點(diǎn)P作PD⊥BC于點(diǎn)D,過(guò)點(diǎn)P作PE∥y軸交BC于點(diǎn)E,求△PDE周長(zhǎng)的最大值及此時(shí)點(diǎn)P的坐標(biāo);
(3)如圖2,將拋物線沿射線AC方向平移,平移后的拋物線與原拋物線相交于點(diǎn)C,在平移后的拋物線的對(duì)稱軸上是否存在一點(diǎn)F,使得以點(diǎn)B、C、F為頂點(diǎn)的三角形為等腰三角形,若存在,請(qǐng)直接寫出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.發(fā)布:2025/5/24 10:0:2組卷:262引用:1難度:0.1