小磊要制作一個(gè)三角形的鋼架模型,在這個(gè)三角形中,長(zhǎng)度為x(單位:cm)的邊與這條邊上的高之和為40cm,這個(gè)三角形的面積S(單位:cm2)隨x(單位:cm)的變化而變化.
(1)請(qǐng)直接寫(xiě)出S與x之間的函數(shù)關(guān)系式(不要求寫(xiě)出自變量x的取值范圍);
(2)當(dāng)x是多少時(shí),這個(gè)三角形面積S最大?最大面積是多少?
【考點(diǎn)】二次函數(shù)的應(yīng)用.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/6/18 15:0:2組卷:352引用:9難度:0.5
相似題
-
1.如圖,有一座拋物線形拱橋,橋下面在正常水位時(shí)AB寬20米,水位上升3米就達(dá)到警戒線CD,這時(shí)水面寬度為10米.若洪水到來(lái)時(shí),水位以每小時(shí)0.2米的速度上升,則再持續(xù)小時(shí)水位才能到拱橋頂.
發(fā)布:2025/6/19 21:30:2組卷:1132引用:6難度:0.5 -
2.小明開(kāi)了一家網(wǎng)店,進(jìn)行社會(huì)實(shí)踐,計(jì)劃經(jīng)銷甲、乙兩種商品.若甲商品每件利潤(rùn)10元,乙商品每件利潤(rùn)20元,則每周能賣出甲商品40件,乙商品20件.經(jīng)調(diào)查,甲、乙兩種商品零售單價(jià)分別每降價(jià)1元,這兩種商品每周可各多銷售10件.為了提高銷售量,小明決定把甲、乙兩種商品的零售單價(jià)都降價(jià)x元.
(1)直接寫(xiě)出甲、乙兩種商品每周的銷售量y(件)與降價(jià)x(元)之間的函數(shù)關(guān)系式:y甲=
(2)求出小明每周銷售甲、乙兩種商品獲得的總利潤(rùn)W(元)與降價(jià)x(元)之間的函數(shù)關(guān)系式?如果每周甲商品的銷售量不低于乙商品的銷售量的,那么當(dāng)x定為多少元時(shí),才能使小明每周銷售甲、乙兩種商品獲得的總利潤(rùn)最大?32發(fā)布:2025/6/19 9:0:1組卷:4425引用:56難度:0.3 -
3.經(jīng)統(tǒng)計(jì)分析,某市跨河大橋上的車流速度v(千米/小時(shí))是車流密度x(輛/千米)的函數(shù),當(dāng)橋上的車流密度達(dá)到220輛/千米時(shí),造成堵塞,此時(shí)車流速度為0千米/小時(shí);當(dāng)車流密度不超過(guò)20輛/千米時(shí),車流速度為80千米/小時(shí),研究表明:當(dāng)20≤x≤220時(shí),車流速度v是車流密度x的一次函數(shù).
(1)求大橋上車流密度為100輛/千米時(shí)的車流速度;
(2)在交通高峰時(shí)段,為使大橋上的車流速度大于40千米/小時(shí)且小于60千米/小時(shí),應(yīng)控制大橋上的車流密度在什么范圍內(nèi)?
(3)車流量(輛/小時(shí))是單位時(shí)間內(nèi)通過(guò)橋上某觀測(cè)點(diǎn)的車輛數(shù),即:車流量=車流速度×車流密度.求大橋上車流量y的最大值.發(fā)布:2025/6/19 22:0:1組卷:1720引用:58難度:0.3