已知拋物線y=ax2+bx+c(a、b、c是常數(shù),a≠0)的對稱軸為直線x=-1.
(1)b=2a2a;(用含a的代數(shù)式表示)
(2)當(dāng)a=-1時(shí),若關(guān)于x的方程ax2+bx+c=0在-4<x<1的范圍內(nèi)有解,求c的取值范圍;
(3)若拋物線過點(diǎn)(-1,-1),當(dāng)0≤x≤1時(shí),拋物線上的點(diǎn)到x軸距離的最大值為4,求a的值.
【答案】2a
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:1039引用:3難度:0.4
相似題
-
1.下表中列出的是一個(gè)二次函數(shù)的自變量x與函數(shù)y的幾組對應(yīng)值:
x … -2 0 1 3 … y … 6 -4 -6 -4 … 發(fā)布:2025/5/25 15:0:2組卷:131引用:1難度:0.7 -
2.二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)的自變量x與函數(shù)值y的部分對應(yīng)值如下表:
x … -2 -1 0 1 2 … y=ax2+bx+c … t m -2 -2 n … 時(shí),與其對應(yīng)的函數(shù)值y>0,有下列結(jié)論:①函數(shù)圖象的頂點(diǎn)在第四象限內(nèi);②-2和3是關(guān)于x的方程ax2+bx+c=t的兩個(gè)根;③0<m+n<12,其中,正確結(jié)論的是( )203發(fā)布:2025/5/25 15:0:2組卷:2412引用:7難度:0.1 -
3.二次函數(shù)y=x2+bx的對稱軸為直線x=-1.
(1)求二次函數(shù)y=x2+bx的解析式;
(2)若關(guān)于x的一元二次方程x2+bx+t=0(t為實(shí)數(shù))在-4<x<3的范圍內(nèi)有解,則t的取值范圍 .發(fā)布:2025/5/25 15:30:2組卷:99引用:1難度:0.5