已知函數(shù)f(x)=lnx+a-1x,g(x)=a(sinx+1)-2x(a∈R)
(1)求函數(shù)f(x)的極小值
(2)求證:當(dāng)-1≤a≤1時(shí),f(x)>g(x)
f
(
x
)
=
lnx
+
a
-
1
x
g
(
x
)
=
a
(
sinx
+
1
)
-
2
x
(
a
∈
R
)
【考點(diǎn)】利用導(dǎo)數(shù)求解函數(shù)的極值.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:460引用:6難度:0.1
相似題
-
1.設(shè)函數(shù)f(x)=x3+2x2-4x+1.
(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)求函數(shù)f(x)的極值.發(fā)布:2024/12/29 12:0:2組卷:92引用:5難度:0.7 -
2.已知函數(shù)f(x)=x-lnx.
(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)求函數(shù)f(x)的極值.發(fā)布:2024/12/29 11:0:2組卷:277引用:8難度:0.6 -
3.已知函數(shù)f(x)=ax2-blnx在點(diǎn)A(1,f(1))處的切線方程為y=1;
(1)求實(shí)數(shù)a,b的值;
(2)求函數(shù)f(x)的極值.發(fā)布:2024/12/29 11:0:2組卷:559引用:3難度:0.5