如圖,△ABC中,AD⊥BC于點D,E是AB上一點,連接DE,2∠C+∠BDE=180°.
(1)求證:∠BDE=2∠CAD;
(2)若AC=BD,∠AED=∠ACB,求證:BE=2CD;
(3)若AE=32BE,BD=4CD,求DEBD的值.
AE
=
3
2
BE
DE
BD
【考點】相似形綜合題.
【答案】(1)見詳解;
(2)見詳解;
(3).
(2)見詳解;
(3)
7
10
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:210引用:2難度:0.1
相似題
-
1.【教材呈現(xiàn)】如圖是華師版八年級上冊數(shù)學(xué)教材第96頁的部分內(nèi)容.
【定理證明】結(jié)合圖①,“角平分線的性質(zhì)定理”證明過程中.運用了△ODP與△OEP全等,全等最直接的依據(jù)是 ;
【定理感知】如果教材中的已知條件不變,如圖①,當PD=3,OE=6時,則△OPE面積為 ;
【定理應(yīng)用】如圖②,在△ABC中,AD平分∠BAC交BC于點D.求證:;BDDC=ABAC
【拓展應(yīng)用】如圖③,在△ABC中,∠ABC=90°,AB=6,BC=8,將△ABC先沿∠BAC的平分線AB1折疊,再剪掉重疊部分(即四邊形ABB1A1),再將余下部分沿∠B1A1C的平分線A1B2折疊,再剪掉重疊部分,直接寫出剩余的△A2B2C的面積為 .發(fā)布:2025/6/2 21:30:9組卷:170引用:1難度:0.1 -
2.如圖①,在正方形ABCD中,點E為BC邊的中點,P為對角線BD上的一點,連接AE交BD于點F,連接PA、PE、PC.
(1)求證:PA=PC;
(2)若PE=PC,求證:PE2=PF?PB;
(3)如圖②,若△ADP≌△ABF,AB=6,求PE的長.發(fā)布:2025/6/2 22:0:1組卷:766引用:3難度:0.3 -
3.在△EFG中,∠EFG=90°,EF=FG,且點E,F(xiàn)分別在矩形ABCD的邊AB,AD上,AB=8,AD=6.
(1)如圖1,當點G在CD上時,求AE+DG的值;
(2)如圖2,F(xiàn)G與CD相交于點N,連接EN,當EF平分∠AEN時,求證:EN=AE+DN;
(3)如圖3,EG,F(xiàn)G分別交CD于點M,N,當MG2=MN?MD時,求AE的值.發(fā)布:2025/6/2 22:30:1組卷:199引用:2難度:0.3