(1)如圖(1),在正方形ABCD中,對角線AC、BD相交于點O,易知AC⊥BD,COAC=12;
(2)如圖(2),若點E是正方形ABCD的邊CD的中點,即DEDC=12,過D作DG⊥AE,分別交AC、BC于點F、G.求證:CFAC=13;
(3)如圖(3),若點P是正方形ABCD的邊CD上的點,且DPDC=1n(n為正整數(shù)),過點D作DN⊥AP,分別交AC、BC于點M、N,請你先猜想CM與AC的比值是多少,然后再證明你猜想的結(jié)論.
CO
AC
1
2
DE
DC
=
1
2
CF
AC
=
1
3
DP
DC
=
1
n
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:712引用:21難度:0.3
相似題
-
1.如圖,已知正方形ABCD的邊長為6,點E,F(xiàn)分別在邊AB,BC上,BE=CF=2,CE與DF交于點H,點G為DE的中點,連接GH,則GH的長為( ?。?/h2>
發(fā)布:2024/12/23 20:0:2組卷:861引用:5難度:0.3 -
2.閱讀下面的例題及點撥,并解決問題:
如圖①,在等邊△ABC中,M是BC邊上一點(不含端點B,C),N是△ABC的外角∠ACH的平分線上一點,且AM=MN.求證:∠AMN=60°.
(1)點撥:如圖②,作∠CBE=60°,BE與NC的延長線相交于點E,得等邊△BEC,連接EM.易證:△ABM≌△EBM(SAS),請完成剩余證明過程:
(2)拓展:如圖③,在正方形A1B1C1D1中,M1是B1C1邊上一點(不含端點B1,C1),N1是正方形A1B1C1D1的外角∠D1C1H1的平分線上一點,且A1M1=M1N1.求證:∠A1M1N1=90°.發(fā)布:2024/12/23 19:0:2組卷:1631引用:6難度:0.1 -
3.如圖,在正方形ABCD中,AB=3,點EF分別在CD,AD上,CE=DF,BE,CF相交于點G.若圖中陰影部分的面積與正方形ABCD的面積之比為2:3,則△BCG的周長為( )
發(fā)布:2024/12/23 19:0:2組卷:1409引用:14難度:0.8
把好題分享給你的好友吧~~