【問題提出】
(1)如圖1,在Rt△ABC中,∠BAC=90°,AB=8,AC=6,AD為BC邊上的高,則AD的長為 4.84.8.
(2)如圖2,在四邊形ABCD中,AB∥CD,且AB=2CD,E,F(xiàn)分別是AB,BC的中點(diǎn),連接DE,EF,AC,BD,EF與BD相交于點(diǎn)M,AC與BD相交于點(diǎn)O,若MF=2,求AC的長.
【問題解決】
(3)如圖3,四邊形ABCD是園林局欲修建的一塊菱形園地的大致示意圖,沿對角線BD,AC各修一條人行走道,AC=80m,BD=60m.E是AD上的一點(diǎn),點(diǎn)F,G在AB上,EF⊥AB,OG∥EF.根據(jù)規(guī)劃要求,建造一個(gè)四邊形OEFG的特殊花卉種植區(qū),求該種植區(qū)四邊形OEFG的最大面積.
【考點(diǎn)】四邊形綜合題.
【答案】4.8
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:220引用:2難度:0.4
相似題
-
1.如圖1,已知△ABC中,AB=10cm,AC=8cm,BC=6cm,如果點(diǎn)P由B出發(fā)沿BA方向向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q由A出發(fā)沿AC方向向點(diǎn)C勻速運(yùn)動(dòng),它們的速度均為2cm/s,連接PQ,設(shè)運(yùn)動(dòng)的時(shí)間為t(單位:s)(0≤t≤4).解答下列問題:
(1)當(dāng)t為何值時(shí),PQ∥BC.
(2)是否存在某時(shí)刻t,使線段PQ恰好把△ABC的面積平分?若存在求出此時(shí)t的值;若不存在,請說明理由.
(3)如圖2,把△APQ沿AP翻折,得到四邊形AQPQ′.那么是否存在某時(shí)刻t使四邊形AQPQ′為菱形?若存在,求出此時(shí)菱形的面積;若不存在,請說明理由.發(fā)布:2024/12/2 8:0:1組卷:866引用:2難度:0.1 -
2.如圖1,已知△ABC中,AB=10cm,AC=8cm,BC=6cm,如果點(diǎn)P由B出發(fā)沿BA方向向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q由A出發(fā)沿AC方向向點(diǎn)C勻速運(yùn)動(dòng),它們的速度均為2cm/s,連接PQ,設(shè)運(yùn)動(dòng)的時(shí)間為t(單位:s)(0≤t≤4).解答下列問題:
(1)當(dāng)t為何值時(shí),PQ∥BC.
(2)設(shè)四邊形BCQP的面積為S(單位:cm 2),求s與t之間的函數(shù)關(guān)系式.
(3)如圖2把△APQ沿AP翻折,得到四邊形AQPQ′那么是否存在某時(shí)刻t使四邊形AQPQ′為菱形?若存在,求出此時(shí)菱形的面積;若不存在,請說明理由.發(fā)布:2024/12/2 8:0:1組卷:290引用:2難度:0.5 -
3.如圖,在正方形ABCD中,對角線AC與BD相交于點(diǎn)O,點(diǎn)E在BC的延長線上,連接DE,點(diǎn)F是DE的中點(diǎn),連接OF交CD于點(diǎn)G,連接CF,若CE=4,OF=6.則下列結(jié)論:①GF=2;②OD=
OG;③tan∠CDE=2;④∠ODF=∠OCF=90°;⑤點(diǎn)D到CF的距離為12.其中正確的結(jié)論是( )855發(fā)布:2024/12/19 5:30:4組卷:1541引用:8難度:0.4
把好題分享給你的好友吧~~