閱讀材料:若m2-2mn+2n2-8n+16=0,求m、n的值.
解:∵m2-2mn+2n2-8n+16=0,∴(m2-2mn+n2)+(n2-8n+16)=0
∴(m-n)2+(n-4)2=0,∴(m-n)2=0,(n-4)2=0,∴n=4,m=4.
根據(jù)你的觀察,探究下面的問題:
(1)已知a2+6ab+10b2+2b+1=0,求a-b的值;
(2)已知等腰△ABC的三邊長a、b、c都是正整數(shù),且滿足2a2+b2-4a-6b+11=0,求△ABC的周長;
(3)已知x+y=2,xy-z2-4z=5,求xyz的值.
【考點(diǎn)】配方法的應(yīng)用;非負(fù)數(shù)的性質(zhì):偶次方.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/10 8:0:8組卷:7098引用:16難度:0.1
相似題
-
1.將x2+6x+3配方成(x+m)2+n的形式,則m=
發(fā)布:2025/6/24 5:30:3組卷:2248引用:50難度:0.9 -
2.先閱讀理解下面的例題,再按要求解答下列問題:
例題:求代數(shù)式y(tǒng)2+4y+8的最小值.
解:y2+4y+8=y2+4y+4+4=(y+2)2+4
∵(y+2)2≥0
∴(y+2)2+4≥4
∴y2+4y+8的最小值是4.
(1)求代數(shù)式m2+m+4的最小值;
(2)求代數(shù)式4-x2+2x的最大值;
(3)某居民小區(qū)要在一塊一邊靠墻(墻長15m)的空地上建一個(gè)長方形花園ABCD,花園一邊靠墻,另三邊用總長為20m的柵欄圍成.如圖,設(shè)AB=x(m),請問:當(dāng)x取何值時(shí),花園的面積最大?最大面積是多少?發(fā)布:2025/6/23 20:0:1組卷:3104引用:16難度:0.3 -
3.填空:x2-4x+3=(x-
發(fā)布:2025/6/24 5:30:3組卷:1134引用:47難度:0.9