《孫子算經(jīng)》是我國(guó)南北朝時(shí)期(公元5世紀(jì))的數(shù)學(xué)著作.在《孫子算經(jīng)》中有“物不知數(shù)”問(wèn)題,其中記載:有物不知數(shù),三三數(shù)之剩二,五五數(shù)之剩三,問(wèn)物幾何?即:一個(gè)整數(shù)除以三余二,除以五余三,求這個(gè)整數(shù).設(shè)這個(gè)正整數(shù)為a,當(dāng)a∈[1,200]時(shí),符合條件的所有a的個(gè)數(shù)為( )
【考點(diǎn)】數(shù)列的應(yīng)用;等差數(shù)列的通項(xiàng)公式.
【答案】B
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/11/14 5:0:2組卷:83引用:4難度:0.8
相似題
-
1.2023年是我國(guó)規(guī)劃的收官之年,2022年11月23日全國(guó)22個(gè)省份的832個(gè)國(guó)家級(jí)貧困縣全部脫貧摘帽.利用電商平臺(tái),開(kāi)啟數(shù)字化科技優(yōu)勢(shì),帶動(dòng)消費(fèi)扶貧起到了重要作用.阿里研究院數(shù)據(jù)顯示,2013年全國(guó)淘寶村僅為20個(gè),通過(guò)各地政府精準(zhǔn)扶貧,與電商平臺(tái)不斷合作創(chuàng)新,2014年、2015年、2016年全國(guó)淘寶村分別為212個(gè)、779個(gè)、1311個(gè),從2017年起比上一年約增加1000個(gè)淘寶村,請(qǐng)你估計(jì)收官之年全國(guó)淘寶村的數(shù)量可能為( ?。?/h2>
發(fā)布:2024/12/18 13:30:2組卷:89引用:1難度:0.9 -
2.對(duì)于數(shù)列{an},把a(bǔ)1作為新數(shù)列{bn}的第一項(xiàng),把a(bǔ)i或-ai(i=2,3,4,…,n)作為新數(shù)列{bn}的第i項(xiàng),數(shù)列{bn}稱為數(shù)列{an}的一個(gè)生成數(shù)列.例如,數(shù)列1,2,3,4,5的一個(gè)生成數(shù)列是1,-2,-3,4,5.已知數(shù)列{bn}為數(shù)列{
}(n∈N*)的生成數(shù)列,Sn為數(shù)列{bn}的前n項(xiàng)和.12n
(Ⅰ)寫(xiě)出S3的所有可能值;
(Ⅱ)若生成數(shù)列{bn}滿足S3n=(1-17),求數(shù)列{bn}的通項(xiàng)公式;18n
(Ⅲ)證明:對(duì)于給定的n∈N*,Sn的所有可能值組成的集合為{x|x=,k∈N*,k≤2n-1}.2k-12n發(fā)布:2024/12/28 23:30:2組卷:115引用:6難度:0.1 -
3.已知{an},{bn}為兩非零有理數(shù)列(即對(duì)任意的i∈N*,ai,bi均為有理數(shù)),{dn}為一無(wú)理數(shù)列(即對(duì)任意的i∈N*,di為無(wú)理數(shù)).
(1)已知bn=-2an,并且(an+bndn-andn2)(1+dn2)=0對(duì)任意的n∈N*恒成立,試求{dn}的通項(xiàng)公式.
(2)若{dn3}為有理數(shù)列,試證明:對(duì)任意的n∈N*,(an+bndn-andn2)(1+dn2)=1恒成立的充要條件為.an=11+dn6bn=dn31+dn6
(3)已知sin2θ=(0<θ<2425),dn=π2,試計(jì)算bn.3tan(n?π2+(-1)nθ)發(fā)布:2024/12/22 8:0:1組卷:189引用:3難度:0.1
把好題分享給你的好友吧~~