在平面直角坐標系xOy中,函數(shù)y=kx(x>0)的圖象經(jīng)過點A(2,3),B(6,a),直線:y=mx+n經(jīng)過A,B兩點,直線l分別交x軸,y軸于D,C兩點.
(1)當kx>mx+n時,直接寫出x的取值范圍.
(2)求反比例函數(shù)與一次函數(shù)的解析式;
(3)在y軸上是否存在一點E,使得以A,C,E為頂點的三角形與△CDO相似?若存在,請求出點E的坐標;若不存在,請說明理由.
k
x
k
x
【考點】反比例函數(shù)綜合題.
【答案】(1)x<2或x>6;
(2)反比例函數(shù)解析式為:y=,一次函數(shù)的解析式為:y=-x+4;
(3)存在,E(0,-1)或(0,3).
(2)反比例函數(shù)解析式為:y=
6
x
1
2
(3)存在,E(0,-1)或(0,3).
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2025/5/26 5:0:1組卷:318引用:1難度:0.2
相似題
-
1.如圖,在平面直角坐標系中,矩形AOBC的邊OA,OB分別在y軸和x軸上,已知對角線OC=5,tan∠BOC=
.F是BC邊上一點,過點F的反比例函數(shù)y=34(k>0)的圖象與AC邊交于點E,若將△CEF沿EF翻折后,點C恰好落在OB上的點M處,則k的值為( )kx發(fā)布:2025/5/26 3:30:1組卷:2177引用:4難度:0.3 -
2.如圖,矩形OABC的兩邊落在坐標軸上,反比例函數(shù)y=
的圖象在第一象限的分支交AB于點P,交BC于點E,直線PE交y軸于點D,交x軸于點F,連接AC.則下列結(jié)論:kx
①S四邊形ACFP=k;
②四邊形ADEC為平行四邊形;
③若=APBP,則13=DADO;14
④若S△CEF=1,S△PBE=4,則k=6.
其中正確的是( ?。?/h2>發(fā)布:2025/5/26 8:30:1組卷:2400引用:9難度:0.2 -
3.如圖,在平面直角坐標系中,直線y=2x-6與x軸交于點B,與y軸交于點A,與雙曲線
(x>0)交于點C(4,b),點P是雙曲線上的動點,橫坐標為m(0<m<4),作PQ∥y軸交直線AB于點Q,連接PO、QO.y=ax
(1)求a、b的值;
(2)求△OPQ的面積S與m的函數(shù)關(guān)系式,并求S的最大值;
(3)當四邊形AOPQ為平行四邊形時,連接PC,并將直線PC向上平移n個單位后與反比例函數(shù)(x>0)的圖象交于M、N兩點,與直線AB交于點T,設M、N、T三點的橫坐標分別為xM、xN、xT,是否存在正實數(shù)n使得等式y=mx成立,如果存在,求出n的值,如果不存在,請說明理由.1xM+1xN=9xT發(fā)布:2025/5/26 9:0:1組卷:562引用:1難度:0.3
相關(guān)試卷