設連續(xù)正值函數(shù)g(x)定義在區(qū)間I?(0,+∞)上,如果對于任意x1,x2∈I都有g(x1)?g(x2)≤g(x1?x2),則稱g(x)為“幾何上凸函數(shù)”.已知f(x)=ax-lnx,a∈R.
(Ⅰ)討論函數(shù)f(x)的單調性;
(Ⅱ)若a=e,試判斷f(x)是否為x∈[e2,+∞)上的“幾何上凸函數(shù)”,并說明理由.
g
(
x
1
)
?
g
(
x
2
)
≤
g
(
x
1
?
x
2
)
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:179引用:4難度:0.2
相似題
-
1.已知函數(shù)
,若關于x的不等式f(x)=ln2+x2-x+1對任意x∈(0,2)恒成立,則實數(shù)k的取值范圍( )f(kex)+f(-12x)>2發(fā)布:2025/1/5 18:30:5組卷:295引用:2難度:0.4 -
2.已知函數(shù)f(x)=ax3+x2+bx(a,b∈R)的圖象在x=-1處的切線斜率為-1,且x=-2時,y=f(x)有極值.
(1)求f(x)的解析式;
(2)求f(x)在[-3,2]上的最大值和最小值.發(fā)布:2024/12/29 12:30:1組卷:42引用:3難度:0.5 -
3.已知函數(shù)f(x)=
.ex-ax21+x
(1)若a=0,討論f(x)的單調性.
(2)若f(x)有三個極值點x1,x2,x3.
①求a的取值范圍;
②求證:x1+x2+x3>-2.發(fā)布:2024/12/29 13:0:1組卷:182引用:2難度:0.1
把好題分享給你的好友吧~~