在平面直角坐標(biāo)系xOy中,已知橢圓C:x2a2+y2b2=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,且焦距為23,橢圓C的上頂點(diǎn)為B,且BF1?BF2=-2.
(1)求橢圓C的方程;
(2)若直線l過點(diǎn)A(2,-1),且與橢圓C交于M,N兩點(diǎn)(不與B重合),直線BM與直線BN分別交直線x=4于P,Q兩點(diǎn).判斷是否存在定點(diǎn)G,使得點(diǎn)P,Q關(guān)于點(diǎn)G對(duì)稱,并說明理由.
x
2
a
2
y
2
b
2
3
B
F
1
B
F
2
【考點(diǎn)】橢圓與平面向量.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/15 1:0:2組卷:100引用:3難度:0.5
相似題
-
1.橢圓C:
+x2a2=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,過點(diǎn)F1的直線l交橢圓C于A,B兩點(diǎn),若|F1F2|=|AF2|,y2b2=2AF1,則橢圓C的離心率為( )F1B發(fā)布:2024/12/6 18:30:2組卷:754引用:6難度:0.6 -
2.在直角坐標(biāo)系xOy中,已知橢圓
的右焦點(diǎn)為F(1,0),過點(diǎn)F的直線交橢圓C于A,B兩點(diǎn),|AB|的最小值為C:x2a2+y2b2=1(a>b>0).2
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若與A,B不共線的點(diǎn)P滿足,求△PAB面積的取值范圍.OP=λOA+(2-λ)OB發(fā)布:2024/12/29 13:30:1組卷:105引用:3難度:0.4 -
3.已知橢圓
=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,經(jīng)過F1的直線交橢圓于A,B,△ABF2的內(nèi)切圓的圓心為I,若3x2a2+y2b2+4IB+5IA=IF2,則該橢圓的離心率是( ?。?/h2>0發(fā)布:2024/11/28 2:30:1組卷:1194引用:12難度:0.5
相關(guān)試卷