探索:小明和小亮在研究一個(gè)數(shù)學(xué)問題:已知AB∥CD,AB和CD都不經(jīng)過點(diǎn)P,探索∠P與∠A,∠C的數(shù)量關(guān)系.
發(fā)現(xiàn):在圖1中,小明和小亮都發(fā)現(xiàn):∠APC=∠A+∠C;
小明是這樣證明的:過點(diǎn)P作PQ∥AB
∴∠APQ=∠A(兩直線平行,內(nèi)錯(cuò)角相等兩直線平行,內(nèi)錯(cuò)角相等)
∵PQ∥AB,AB∥CD.
∴PQ∥CD(平行于同一直線的兩直線平行平行于同一直線的兩直線平行)
∴∠CPQ=∠C
∴∠APQ+∠CPQ=∠A+∠C
即∠APC=∠A+∠C
小亮是這樣證明的:過點(diǎn)作PQ∥AB∥CD.
∴∠APQ=∠A,∠CPQ=∠C
∴∠APQ+∠CPQ=∠A+∠C
即∠APC=∠A+∠C
請(qǐng)?jiān)谏厦孀C明過程的過程的橫線上,填寫依據(jù);兩人的證明過程中,完全正確的是小明的證法小明的證法.
應(yīng)用:
在圖2中,若∠A=120°,∠C=140°,則∠P的度數(shù)為100°100°;
在圖3中,若∠A=30°,∠C=70°,則∠P的度數(shù)為40°40°;
拓展:
在圖4中,探索∠P與∠A,∠C的數(shù)量關(guān)系,并說明理由.
【考點(diǎn)】平行線的判定與性質(zhì).
【答案】兩直線平行,內(nèi)錯(cuò)角相等;平行于同一直線的兩直線平行;小明的證法;100°;40°
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:1930引用:3難度:0.3
相似題
-
1.如圖,一個(gè)由4條射線構(gòu)成的圖案,其中∠1=125°,∠2=55°,∠3=55°
(1)寫出圖中相互平行的射線,并證明;
(2)直接寫出∠A的度數(shù)(不需要證明)發(fā)布:2025/6/9 3:30:1組卷:26引用:2難度:0.7 -
2.已知:∠DAC+∠ACB=180°,∠1=∠2,∠3=∠4,CE平分∠BCF嗎?請(qǐng)說明理由.
發(fā)布:2025/6/9 1:0:1組卷:450引用:1難度:0.5 -
3.完成下面的填空.
如圖,已知FG⊥AB,CD⊥AB,垂足分別為G,D,∠1=∠2.
證明:∠CED+∠ACB=180°
請(qǐng)你將小明的證明過程補(bǔ)充完整.
證明:∵FG⊥AB,CD⊥AB,垂足分別為G,D(已知),
∴∠FGB=∠CDB=90° ( ).
∴GF∥CD( ).
∵GF∥CD(已證),
∴∠2=∠BCD ( ).
又∵∠1=∠2(已知),
∴∠1=∠BCD ( ).
∴DE∥BC ( ).
∴∠CED+∠ACB=180° ( ).發(fā)布:2025/6/9 2:30:1組卷:221引用:3難度:0.7