試卷征集
加入會員
操作視頻

許多數(shù)學(xué)問題源于生活.雨傘是生活中的常用物品,我們用數(shù)學(xué)的眼光觀察撐開后的雨傘(如圖①)、可以發(fā)現(xiàn)數(shù)學(xué)研究的對象——拋物線.在如圖②所示的直角坐標(biāo)系中,傘柄在y軸上,坐標(biāo)原點O為傘骨OA,OB的交點.點C為拋物線的頂點,點A,B在拋物線上,OA、OB關(guān)于y軸對稱.OC=1分米,點A到x軸的距離是0.6分米,A,B兩點之間的距離是4分米.
(1)求拋物線的表達(dá)式;
(2)分別延長AO,BO交拋物線于點F,E,求E,F(xiàn)兩點之間的距離;
(3)以拋物線與坐標(biāo)軸的三個交點為頂點的三角形面積為S1,將拋物線向右平移m(m>0)個單位,得到一條新拋物線,以新拋物線與坐標(biāo)軸的三個交點為頂點的三角形面積為S2.若S2=
3
5
S1,求m的值.

【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/8 8:0:9組卷:2791引用:6難度:0.3
相似題
  • 1.如圖,已知拋物線y=ax2+bx-2與x軸的兩個交點是A(4,0),B(1,0),與y軸的交點是C.
    (1)求該拋物線的解析式;
    (2)在直線AC上方的該拋物線上是否存在一點D,使得△DCA的面積最大?若存在,求出點D的坐標(biāo)及△DCA面積的最大值;若不存在,請說明理由;
    (3)設(shè)拋物線的頂點是F,對稱軸與AC的交點是N,P是在AC上方的該拋物線上一動點,過P作PM⊥x軸,交AC于M.若P點的橫坐標(biāo)是m.問:
    ①m取何值時,過點P、M、N、F的平面圖形不是梯形?
    ②四邊形PMNF是否有可能是等腰梯形?若有可能,請求出此時m的值;若不可能,請說明理由.

    發(fā)布:2025/1/2 8:0:1組卷:82引用:1難度:0.5
  • 2.如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點A、B、C、D分別是“果圓”與坐標(biāo)軸的交點,拋物線的解析式為y=x2-2x-3,AB為半圓的直徑,則這個“果圓”被y軸截得的弦CD的長為

    發(fā)布:2024/12/23 17:30:9組卷:3639引用:37難度:0.4
  • 3.如圖,將矩形OABC置于平面直角坐標(biāo)系中,點A的坐標(biāo)為(0,4),點C在x軸上,點D(3
    5
    ,1)在BC上,將矩形OABC沿AD折疊壓平,使點B落在坐標(biāo)平面內(nèi),設(shè)點B的對應(yīng)點為點E.若拋物線y=ax2-4
    5
    ax+10(a≠0且a為常數(shù))的頂點落在△ADE的內(nèi)部,則a的取值范圍是( ?。?/h2>

    發(fā)布:2024/12/26 1:30:3組卷:2664引用:7難度:0.7
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正