如圖1,在正方形ABCD和正方形BEFG中,點A,B,E在同一條直線上,P是線段DF的中點,連接PG,PC.
(1)探究PG與PC的位置關(guān)系及PGPC的值(寫出結(jié)論,不需要證明);
(2)如圖2,將原問題中的正方形ABCD和正方形BEFG換成菱形ABCD和菱形BEFG,且∠ABC=∠BEF=60度.探究PG與PC的位置關(guān)系及PGPC的值,寫出你的猜想并加以證明;
(3)如圖3,將圖2中的菱形BEFG繞點B順時針旋轉(zhuǎn),使菱形BEFG的邊BG恰好與菱形ABCD的邊AB在同一條直線上,問題(2)中的其他條件不變.你在(2)中得到的兩個結(jié)論是否發(fā)生變化?寫出你的猜想并加以證明.
PG
PC
PG
PC
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:4671引用:9難度:0.1
相似題
-
1.如圖,已知正方形ABCD的邊長為6,點E,F(xiàn)分別在邊AB,BC上,BE=CF=2,CE與DF交于點H,點G為DE的中點,連接GH,則GH的長為( ?。?/h2>
發(fā)布:2024/12/23 20:0:2組卷:861引用:5難度:0.3 -
2.閱讀下面的例題及點撥,并解決問題:
如圖①,在等邊△ABC中,M是BC邊上一點(不含端點B,C),N是△ABC的外角∠ACH的平分線上一點,且AM=MN.求證:∠AMN=60°.
(1)點撥:如圖②,作∠CBE=60°,BE與NC的延長線相交于點E,得等邊△BEC,連接EM.易證:△ABM≌△EBM(SAS),請完成剩余證明過程:
(2)拓展:如圖③,在正方形A1B1C1D1中,M1是B1C1邊上一點(不含端點B1,C1),N1是正方形A1B1C1D1的外角∠D1C1H1的平分線上一點,且A1M1=M1N1.求證:∠A1M1N1=90°.發(fā)布:2024/12/23 19:0:2組卷:1631引用:6難度:0.1 -
3.如圖,在正方形ABCD中,AB=3,點EF分別在CD,AD上,CE=DF,BE,CF相交于點G.若圖中陰影部分的面積與正方形ABCD的面積之比為2:3,則△BCG的周長為( ?。?/h2>
發(fā)布:2024/12/23 19:0:2組卷:1409引用:14難度:0.8
把好題分享給你的好友吧~~