設(shè)f(x)=ax2+cosx-1,a∈R.
(1)當(dāng)a=1π時(shí),求函數(shù)f(x)的最小值;
(2)當(dāng)a≥12時(shí).證明:f(x)≥0;
(3)證明:cos12+cos13+?+cos1n>n-43(n∈N*,n>1).
a
=
1
π
a
≥
1
2
cos
1
2
+
cos
1
3
+
?
+
cos
1
n
>
n
-
4
3
(
n
∈
N
*
,
n
>
1
)
【考點(diǎn)】利用導(dǎo)數(shù)求解函數(shù)的最值.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/7 3:0:2組卷:284引用:7難度:0.2
相似題
-
1.設(shè)f(x)=(x+1)ln(x+1),g(x)=ax2+x(a∈R).
(1)求f(x)的最小值;
(2)若?x≥0,f(x)≤g(x),求實(shí)數(shù)a的取值范圍.發(fā)布:2024/10/16 18:0:2組卷:96引用:5難度:0.3 -
2.已知兩數(shù)f(x)=2|sinx|+cosx,則f(x)的最小值為( ?。?/h2>
A. -5B.-2 C.-1 D.0 發(fā)布:2024/11/8 0:0:1組卷:134引用:3難度:0.6 -
3.已知函數(shù)f(x)=2ex-sin2x.
(1)當(dāng)x≥0時(shí),求函數(shù)f(x)的最小值;
(2)若對(duì)于,不等式4xex+xcos2x-ax2-5x≥0恒成立,求實(shí)數(shù)a的取值范圍.?x∈(-π12,+∞)發(fā)布:2024/10/11 15:0:1組卷:38引用:2難度:0.5
把好題分享給你的好友吧~~