如圖,有三個(gè)論斷:①∠1=∠2;②∠B=∠C;③∠A=∠D,請(qǐng)你從中任選兩個(gè)作為條件,另一個(gè)作為結(jié)論構(gòu)成一個(gè)命題,并證明該命題的正確性.
已知:∠1=∠2,∠B=∠C∠1=∠2,∠B=∠C.
結(jié)論:∠A=∠D∠A=∠D.
理由:∵∠1=∠3
又∵∠1=∠2
∴∠3=∠2
∴EC∥BF
∴∠AEC=∠B
又∵∠B=∠C
∴∠AEC=∠C
∴AB∥CD
∴∠A=∠D∵∠1=∠3
又∵∠1=∠2
∴∠3=∠2
∴EC∥BF
∴∠AEC=∠B
又∵∠B=∠C
∴∠AEC=∠C
∴AB∥CD
∴∠A=∠D.
又∵∠1=∠2
∴∠3=∠2
∴EC∥BF
∴∠AEC=∠B
又∵∠B=∠C
∴∠AEC=∠C
∴AB∥CD
∴∠A=∠D
又∵∠1=∠2
∴∠3=∠2
∴EC∥BF
∴∠AEC=∠B
又∵∠B=∠C
∴∠AEC=∠C
∴AB∥CD
∴∠A=∠D
【考點(diǎn)】平行線的判定與性質(zhì);命題與定理.
【答案】∠1=∠2,∠B=∠C;∠A=∠D;∵∠1=∠3
又∵∠1=∠2
∴∠3=∠2
∴EC∥BF
∴∠AEC=∠B
又∵∠B=∠C
∴∠AEC=∠C
∴AB∥CD
∴∠A=∠D
又∵∠1=∠2
∴∠3=∠2
∴EC∥BF
∴∠AEC=∠B
又∵∠B=∠C
∴∠AEC=∠C
∴AB∥CD
∴∠A=∠D
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/6 8:0:9組卷:276引用:3難度:0.6
相似題
-
1.錢(qián)塘江汛期即將來(lái)臨,防汛指揮部在一危險(xiǎn)地帶兩岸各安置了一探照燈,便于夜間查看江水及兩岸河堤的情況.如圖,燈A射線自AM順時(shí)針旋轉(zhuǎn)至AN便立即回轉(zhuǎn),燈B射線自BP順時(shí)針旋轉(zhuǎn)至BQ便立即回轉(zhuǎn),兩燈不停交叉照射巡視.若燈A轉(zhuǎn)動(dòng)的速度是a°/秒,燈B轉(zhuǎn)動(dòng)的速度是b°/秒,且a、b滿足|a-3b|+(a+b-4)2=0.假定這一帶長(zhǎng)江兩岸河堤是平行的,即PQ∥MN,且∠BAN=45°.
(1)求a、b的值;
(2)若燈B射線先轉(zhuǎn)動(dòng)30秒,燈A射線才開(kāi)始轉(zhuǎn)動(dòng),在燈B射線到達(dá)BQ之前,A燈轉(zhuǎn)動(dòng)幾秒,兩燈的光束互相平行?
(3)如圖,兩燈同時(shí)轉(zhuǎn)動(dòng),在燈A射線到達(dá)AN之前,若射出的光束交于點(diǎn)C,過(guò)C作CD⊥AC交PQ于點(diǎn)D,則在轉(zhuǎn)動(dòng)過(guò)程中,∠BAC與∠BCD的數(shù)量關(guān)系是否發(fā)生變化?若不變,請(qǐng)求出其數(shù)量關(guān)系;若改變,請(qǐng)求出其取值范圍.發(fā)布:2024/12/23 19:30:2組卷:873引用:7難度:0.4 -
2.如圖,已知:AD⊥BC于D,EG⊥BC于G,∠E=∠1.求證:AD平分∠BAC.
發(fā)布:2024/12/23 19:30:2組卷:876引用:15難度:0.3 -
3.如圖,∠ABC+∠ECB=180°,∠P=∠Q.
求證:∠1=∠2.
根據(jù)圖形和已知條件,請(qǐng)補(bǔ)全下面這道題的解答過(guò)程.
證明:∵∠ABC+∠ECB=180° ,
∴AB∥ED .
∴∠ABC=∠BCD .
又∵∠P=∠Q(已知),
∴PB∥.
∴∠PBC=.
又∵∠1=∠ABC-,∠2=∠BCD-,
∴∠1=∠2(等量代換).發(fā)布:2024/12/23 20:0:2組卷:960引用:10難度:0.7
把好題分享給你的好友吧~~