試卷征集
加入會(huì)員
操作視頻

數(shù)形結(jié)合是解決數(shù)學(xué)問題的一種重要思想方法,借助圖形的直觀性,可以幫助理解數(shù)學(xué)問題.

(1)請(qǐng)寫出圖1,圖2,圖3陰影部分的面積分別能解釋的數(shù)學(xué)公式.
圖1:
(a+b)2=a2+2ab+b2
(a+b)2=a2+2ab+b2
;圖2:
(a-b)2=a2-2ab+b2
(a-b)2=a2-2ab+b2
;圖3:
(a+b)(a-b)=a2-b2
(a+b)(a-b)=a2-b2

其中,完全平方公式可以從“數(shù)”和“形”兩個(gè)角度進(jìn)行探究,并通過公式的變形或圖形的轉(zhuǎn)化可以解決很多數(shù)學(xué)問題.
例如:如圖4,已知a+b=3,ab=1,求a2+b2的值.
方法一:從“數(shù)”的角度
解:∵a+b=3,∴(a+b)2=9,即:a2+2ab+b2=9,
又∵ab=1∴a2+b2=7.
方法二:從“形”的角度
解:∵a+b=3,∴S大正方形=9,
又∵ab=1,∴S2=S3=ab=1,
∴S1+S4=S大正方形-S2-S3=9-1-1=7.即a2+b2=7.
類比遷移:
(2)若(5-x)?(x-1)=3,則(5-x)2+(x-1)2=
10
10
;
(3)如圖,點(diǎn)C是線段AB上的一點(diǎn),以AC,BC為邊向兩邊作正方形,設(shè)AB=10,兩正方形的面積和S1+S2=72,求圖中陰影部分面積.

【考點(diǎn)】完全平方公式的幾何背景
【答案】(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2;(a+b)(a-b)=a2-b2;10
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:1046引用:4難度:0.5
相似題
  • 1.請(qǐng)認(rèn)真觀察圖形,解答下列問題:
    (1)根據(jù)圖中條件,用兩種方法表示兩個(gè)陰影圖形的面積的和(只需表示,不必化簡(jiǎn));
    (2)由(1),你能得到怎樣的等量關(guān)系?請(qǐng)用等式表示;
    (3)如果圖中的a,b(a>b)滿足a2+b2=53,ab=14,求:
    ①a+b的值;
    ②a4-b4的值.

    發(fā)布:2025/6/8 16:0:1組卷:4800引用:21難度:0.3
  • 2.如圖,現(xiàn)有一塊長(zhǎng)為(a+4b)米,寬為(a+b)米的長(zhǎng)方形地塊,規(guī)劃將陰影部分進(jìn)行綠化,中間預(yù)留部分是邊長(zhǎng)為(a-b)米的正方形.
    (1)求綠化的面積S(用含a,b的代數(shù)式表示,并化簡(jiǎn));
    (2)若a=3,b=2,綠化成本為100元/平方米,則完成綠化共需要多少元?

    發(fā)布:2025/6/8 18:30:1組卷:150引用:3難度:0.5
  • 3.【探究】如圖①,從邊長(zhǎng)為a的大正方形中剪掉一個(gè)邊長(zhǎng)為b的小正方形,將陰影部分沿虛線剪開,拼成圖②的長(zhǎng)方形.
    (1)請(qǐng)你分別表示出這兩個(gè)圖形中陰影部分的面積;
    (2)比較兩圖的陰影部分面積,可以得到乘法公式:
    (用字母表示);
    【應(yīng)用】請(qǐng)應(yīng)用這個(gè)公式完成下列各題:
    計(jì)算:
    (2a+b-c)(2a-b+c).

    發(fā)布:2025/6/8 17:30:2組卷:74引用:1難度:0.6
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來(lái)源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正