已知△ABC為等邊三角形,點(diǎn)D、E分別是BC、AC上一點(diǎn).
(1)如圖1,BD=CE,連接AD、BE,AD交BE于點(diǎn)F,在BE的延長(zhǎng)線上取點(diǎn)G,使得FG=AF,連接AG,若AF=4,求△AFG的面積;
(2)如圖2,AD、BE相交于點(diǎn)G,點(diǎn)F為AD延長(zhǎng)線上一點(diǎn),連接BF、CF、CG,已知BD=CE,∠BFG=60°,∠AEB=∠BGC,探究BF、GE、CF之間的數(shù)量關(guān)系并說明理由;
(3)如圖3,已知AB=12,過點(diǎn)A作AD⊥BC于點(diǎn)D,點(diǎn)M是直線AD上一點(diǎn),以CM為邊,在CM的下方作等邊△CMN,連DN,當(dāng)DN取最小值時(shí)請(qǐng)直接寫出CM的長(zhǎng).

【考點(diǎn)】三角形綜合題.
【答案】(1)4;
(2)BF+GE=2CF,理由見解析過程;
(3)3.
3
(2)BF+GE=2CF,理由見解析過程;
(3)3
7
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:594引用:4難度:0.2
相似題
-
1.如圖所示,在平面直角坐標(biāo)系中,P(4,4),
(1)點(diǎn)A在x的正半軸運(yùn)動(dòng),點(diǎn)B在y的正半軸上,且PA=PB,
①求證:PA⊥PB:
②求OA+OB的值;
(2)點(diǎn)A在x的正半軸運(yùn)動(dòng),點(diǎn)B在y的負(fù)半軸上,且PA=PB,
③求OA-OB的值;
④點(diǎn)A的坐標(biāo)為(10,0),求點(diǎn)B的坐標(biāo).發(fā)布:2025/6/13 16:30:1組卷:83引用:3難度:0.4 -
2.如圖,在△ABC中,∠C=90°,∠A,∠B,∠C所對(duì)的邊分別為a,b,c.將形如ax2+
cx+b=0的一元二次方程稱為“直系一元二次方程”.2
(1)以下方程為“直系一元二次方程”的是 ;(填序號(hào))
①3x2+4x+5=0;②5x2+132x+12=0.2
(2)若x=-1是“直系一元二次方程”ax2+cx+b=0的一個(gè)根,且△ABC的周長(zhǎng)為22+2,求c的值.2
(3)求證:關(guān)于x的“直系一元二次方程”ax2+cx+b=0必有實(shí)數(shù)根.2發(fā)布:2025/6/13 18:30:2組卷:175引用:3難度:0.4 -
3.在平面直角坐標(biāo)系中,A(-5,0),B(0,5),點(diǎn)C為x軸正半軸上一動(dòng)點(diǎn),過點(diǎn)A作AD⊥BC交y軸于點(diǎn)E.
(1)如圖①,若C(3,0),求點(diǎn)E的坐標(biāo);
(2)如圖②,若點(diǎn)C在x軸正半軸上運(yùn)動(dòng),且OC<5,其它條件不變,連接DO,求證:DO平分∠ADC;
(3)若點(diǎn)C在x軸正半軸上運(yùn)動(dòng),當(dāng)OC+CD=AD時(shí),求∠OBC的度數(shù).發(fā)布:2025/6/13 12:0:1組卷:1381引用:21難度:0.1
相關(guān)試卷