圓周上均勻地放置了100枚棋子,其中黑棋子48枚,白棋子52枚.若將圓周上任意兩枚棋子變換位置稱為一次對換,那么最少要經(jīng)過2424次對換可使黑棋子在圓周上互不相鄰(兩枚黑棋子之間至少有一枚白棋子).
【考點】哈密爾頓圈與哈密爾頓鏈.
【答案】24
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:89引用:1難度:0.3
相似題
-
1.圓周上放有N枚棋子,如圖所示,B點的-枚棋子緊鄰A點的棋子.小洪首先拿走B點處的1枚棋子,然后順時針每格一枚拿走2枚棋子,連續(xù)轉(zhuǎn)了10周,9次越過A.當(dāng)將要第10次越過A處棋子取走其它棋子時,小洪發(fā)現(xiàn)圓周上余下20多枚棋子.若N是14的倍數(shù),請幫助小洪精確計算一下圓周上還有多少枚棋子?
發(fā)布:2024/11/7 8:0:2組卷:83引用:1難度:0.5 -
2.有若干名小朋友,第一名小朋友的糖果比第二名小朋友的糖果多2塊,第二名小朋友的糖果比第三名小朋友的糖果多2塊,…,即前一名小朋友總比后一名小朋友多2塊糖果.他們按次序圍成圓圈做游戲,從第一名小朋友開始給第二名小朋友2塊糖果,第二名小朋友給第三名小朋友4塊糖果,…,即每一名小朋友總是將前面?zhèn)鱽淼奶枪偌由献约旱?塊傳給下一名小朋友,當(dāng)游戲進行到某一名小朋友收到上一名小朋友傳來的糖果但無法按規(guī)定給出糖果時,有兩名相鄰小朋友的糖果數(shù)的比是13:1,問最多有多少名小朋友?
發(fā)布:2024/6/27 10:35:59組卷:113引用:1難度:0.1 -
3.圓周上均勻地放置了31枚棋子,其中黑棋子14枚,白棋子17枚,若將圓周上任意兩枚棋子變換位置稱為一次對換,則最少經(jīng)過次對換可使黑棋子在圓周上互不相鄰(兩枚黑棋子之間至少有一枚白棋子).
發(fā)布:2024/6/27 10:35:59組卷:102引用:2難度:0.1
把好題分享給你的好友吧~~