歐拉公式exi=cosx+isinx(其中i為虛數(shù)單位,x∈R),是由瑞士著名數(shù)學(xué)家歐拉創(chuàng)立的,公式將指數(shù)函數(shù)的定義域擴大到復(fù)數(shù),建立了三角函數(shù)與指數(shù)的數(shù)的關(guān)聯(lián),在復(fù)變函數(shù)論里面占有非常重要的地位,被譽為數(shù)學(xué)中的天橋.依據(jù)歐拉公式,e-πi3的共軛復(fù)數(shù)為( ?。?/h1>
e
-
πi
3
【答案】A
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/8 7:0:2組卷:34引用:1難度:0.5
相似題
-
1.歐拉是世界上偉大的數(shù)學(xué)家,而歐拉公式是指以歐拉命名的諸多公式.其中最著名的有,復(fù)變函數(shù)中的歐拉幅角公式,即將復(fù)數(shù)、指數(shù)函數(shù)與三角函數(shù)聯(lián)系起來,公式內(nèi)容為:eiθ=cosθ+isinθ,則
=( ?。?/h2>|eπ4i|發(fā)布:2024/8/24 17:0:8組卷:13引用:3難度:0.8 -
2.歐拉公式eix=cosx+isinx(i為虛數(shù)單位)是由瑞士著名數(shù)學(xué)家歐拉發(fā)現(xiàn)的,它將指數(shù)函數(shù)的定義域擴大到復(fù)數(shù),建立了三角函數(shù)和指數(shù)函數(shù)的關(guān)系,在復(fù)變函數(shù)論里占有非常重要的地位,被譽為“數(shù)學(xué)中的天橋”,已知eai為純虛數(shù),則復(fù)數(shù)
在復(fù)平面內(nèi)對應(yīng)的點位于( ?。?/h2>sin2a+11+i發(fā)布:2024/9/5 0:0:8組卷:14引用:2難度:0.7 -
3.歐拉公式 eiθ=cosθ+isinθ(其中e=2.718…,i為虛數(shù)單位)是由瑞士著名數(shù)學(xué)家歐拉創(chuàng)立的,該公式建立了三角函數(shù)與指數(shù)函數(shù)的關(guān)系,在復(fù)變函數(shù)論中占有非常重要的地位,被譽為“數(shù)學(xué)中的天橋”.根據(jù)歐拉公式,下列結(jié)論中正確的是( ?。?/h2>
發(fā)布:2024/9/18 10:0:8組卷:13引用:3難度:0.8
把好題分享給你的好友吧~~