如圖1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,點E在AB上,F(xiàn)是線段BD的中點,連接CE、FE.
(1)若AD=32,BE=4,求EF的長;
(2)求證:CE=2EF;
(3)將圖1中的△AED繞點A順時針旋轉,使AED的一邊AE恰好與△ACB的邊AC在同一條直線上(如圖2),連接BD,取BD的中點F,問(2)中的結論是否仍然成立,并說明理由.

2
2
【考點】幾何變換綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/7/7 8:0:9組卷:745引用:8難度:0.5
相似題
-
1.(1)觀察推理:如圖1,△ABC中,∠ACB=90°,AC=BC,直線l過點C,點A、B在直線l同側,BD⊥l,AE⊥l,垂足分別為D、E.求證:△AEC≌△CDB;
(2)類比探究:如圖2,Rt△ABC中,∠ACB=90°,AC=6,將斜邊AB繞點A逆時針旋轉90°至AB′,連接B′C,求△AB′C的面積.
(3)拓展提升:如圖3,等邊△EBC中,EC=BC=4cm,點O在BC上,且OC=3cm,動點P從點E沿射線EC以2cm/s速度運動,連接OP,將線段OP繞點O逆時針旋轉120°得到線段OF.要使點F恰好落在射線EB上,求點P運動的時間ts.發(fā)布:2025/6/23 6:0:1組卷:792引用:6難度:0.3 -
2.(1)探究:如圖1,AB∥CD.
①若∠A=50°,∠D=40°,則∠AED=°;
②若∠A=20°,∠AED=60°,則∠D=°;
③猜想圖1中∠AED、∠EAB、∠EDC的關系并說明理由.
(2)拓展應用:如圖2,射線FE與矩形ABCD的邊AB交于點E,與邊CD交于點F,①②③④分別是被射線FE隔開的4個區(qū)域(不含邊界,其中區(qū)域③④位于直線AB上方),P是位于以上四個區(qū)域上點,猜想:∠PEB、∠PFC、∠EPF的關系(不要求證明).發(fā)布:2025/6/23 1:0:2組卷:37引用:1難度:0.3 -
3.如圖,在等腰直角△ABC中,AB=AC,∠BAC=90°,點E為AC的中點,EF=EC,將線段EF繞點E順時針旋轉90°,連接FG、FC;點D為BC中點,連接GD,直線GD與直線CF交于點N.
(1)如圖1,若∠FCA=30°,DC=,求CF的長;6
(2)連接BG并延長至點M,使BG=MG,連接CM.
①如圖2,若NG⊥MB,求證:AB=CM;102
②如圖3,當點G、F、B共線時,∠BCH=90°,連接CH,CH=BC,請直接寫出45的值.FGFH發(fā)布:2025/6/22 2:0:1組卷:291引用:1難度:0.1