如圖1,在平面直角坐標系中,拋物線y=ax2-32x+c與x軸交于點A(-3,0)、B,與y軸交于點C,其對稱軸是直線x=323.
(1)求拋物解析式;
(2)如圖2,P是直線BC下方拋物線上一動點,連接PC、PB,當四邊形ACPB面積最大時,y軸上有一點Q,使|PQ-AQ|的值最大,求出|PQ-AQ|的最大值與此時的Q點坐標;
(3)如圖3,拋物線上有一點E(3,n)在(2)的條件下,將拋物線沿射線AP移2個單位長度得到新拋物線y1,點D是新拋物線y1上一點,點F在直線CP上,是否存在以點A,D,E,F(xiàn)為頂點的平行四邊形?若存在,請直接寫出點D的橫坐標,若不存在,請說明理由.
3
2
3
3
2
3
3
【考點】二次函數(shù)綜合題.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:303引用:1難度:0.1
相似題
-
1.如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點A、B、C、D分別是“果圓”與坐標軸的交點,拋物線的解析式為y=x2-2x-3,AB為半圓的直徑,則這個“果圓”被y軸截得的弦CD的長為.
發(fā)布:2024/12/23 17:30:9組卷:3623引用:36難度:0.4 -
2.已知,如圖1,過點E(0,-1)作平行于x軸的直線l,拋物線y=
x2上的兩點A、B的橫坐標分別為-1和4,直線AB交y軸于點F,過點A、B分別作直線l的垂線,垂足分別為點C、D,連接CF、DF.14
(1)求點A、B、F的坐標;
(2)求證:CF⊥DF;
(3)點P是拋物線y=x2對稱軸右側圖象上的一動點,過點P作PQ⊥PO交x軸于點Q,是否存在點P使得△OPQ與△CDF相似?若存在,請求出所有符合條件的點P的坐標;若不存在,請說明理由.14發(fā)布:2024/12/23 11:30:2組卷:470引用:24難度:0.1 -
3.如圖,將矩形OABC置于平面直角坐標系中,點A的坐標為(0,4),點C在x軸上,點D(3
,1)在BC上,將矩形OABC沿AD折疊壓平,使點B落在坐標平面內,設點B的對應點為點E.若拋物線y=ax2-45ax+10(a≠0且a為常數(shù))的頂點落在△ADE的內部,則a的取值范圍是( ?。?/h2>5發(fā)布:2024/12/26 1:30:3組卷:2656引用:7難度:0.7
把好題分享給你的好友吧~~