當前位置:
試題詳情
已知拋物線C:y2=2px(p>0)上任意一點到焦點F的距離比到y(tǒng)軸的距離大1.
(1)求拋物線C的方程;
(2)若過焦點F的直線交拋物線于M、N兩點,M在第一象限,且|MF|=2|NF|,求直線MN的方程;
(3)求出一個數學問題的正確結論后,將其作為條件之一,提出與原來問題有關的新問題,我們把它稱為原來問題的一個“逆向”問題.
例如,原來問題是“若正四棱錐底面邊長為4,側棱長為3,求該正四棱錐的體積”.求出體積163后,它的一個“逆向”問題可以是“若正四棱錐底面邊長為4,體積為163,求側棱長”;也可以是“若正四棱錐的體積為163,求所有側面面積之和的最小值”.
現有正確命題:過點A(-p2,0)的直線交拋物線C:y2=2px(p>0)于P、Q兩點,設點P關于x軸的對稱點為R,則直線RQ必過焦點F.
試給出上述命題的“逆向”問題,并解答你所給出的“逆向”問題.
16
3
16
3
16
3
A
(
-
p
2
,
0
)
【考點】直線與圓錐曲線的綜合.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/11/12 8:0:1組卷:21引用:3難度:0.7
相似題
-
1.點P在以F1,F2為焦點的雙曲線
(a>0,b>0)上,已知PF1⊥PF2,|PF1|=2|PF2|,O為坐標原點.E:x2a2-y2b2=1
(Ⅰ)求雙曲線的離心率e;
(Ⅱ)過點P作直線分別與雙曲線漸近線相交于P1,P2兩點,且,OP1?OP2=-274,求雙曲線E的方程;2PP1+PP2=0
(Ⅲ)若過點Q(m,0)(m為非零常數)的直線l與(2)中雙曲線E相交于不同于雙曲線頂點的兩點M、N,且(λ為非零常數),問在x軸上是否存在定點G,使MQ=λQN?若存在,求出所有這種定點G的坐標;若不存在,請說明理由.F1F2⊥(GM-λGN)發(fā)布:2024/12/29 10:0:1組卷:64引用:5難度:0.7 -
2.已知兩個定點坐標分別是F1(-3,0),F2(3,0),曲線C上一點任意一點到兩定點的距離之差的絕對值等于2
.5
(1)求曲線C的方程;
(2)過F1(-3,0)引一條傾斜角為45°的直線與曲線C相交于A、B兩點,求△ABF2的面積.發(fā)布:2024/12/29 10:30:1組卷:83引用:1難度:0.9 -
3.若過點(0,-1)的直線l與拋物線y2=2x有且只有一個交點,則這樣的直線有( ?。l.
發(fā)布:2024/12/29 10:30:1組卷:26難度:0.7
把好題分享給你的好友吧~~