試卷征集
加入會(huì)員
操作視頻

在現(xiàn)今”互聯(lián)網(wǎng)+”的時(shí)代,密碼與我們的生活已經(jīng)密切相連,密不可分,而諸如“123456”、生日等簡單密碼又容易被破解,因此利用簡單方法產(chǎn)生一組容易記憶的密碼就很有必要了,有一種用“因式分解”法產(chǎn)生的密碼,方便記憶,其原理是:將一個(gè)多項(xiàng)式分解因式,如多項(xiàng)式x3-x2因式分解的結(jié)果為x2(x-1),當(dāng)x=5時(shí),x2=25,x-1=04,此時(shí)可以得到數(shù)字密碼2504或0425;如多項(xiàng)式x3+2x3-x-2因式分解的結(jié)果為(x-1)(x+1)(x+2),當(dāng)x=10時(shí),x-1=09,x+1=11,x+2=12,此時(shí)可以得到數(shù)字密碼091112.
(1)根據(jù)上述方法,當(dāng)x=12,y=5時(shí),求多項(xiàng)式x3-xy2分解因式后可以形成哪些數(shù)字密碼;(寫出三個(gè))
(2)若一個(gè)直角三角形的周長為12,斜邊長為5,其中兩條直角邊分別為x,y,求出一個(gè)由多項(xiàng)式x3y+xy3分解因式后得到的密碼;(只需一個(gè)即可)
(3)若多項(xiàng)式x2+(m-3n)x-6n因式分解后,利用本題的方法,當(dāng)x=25時(shí)可以得到一個(gè)密碼2821,求m、n的值.

【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:123引用:1難度:0.5
相似題
  • 1.閱讀下列題目的解題過程:
    已知a、b、c為△ABC的三邊長,且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀.
    解:∵a2c2-b2c2=a4-b4(A)
    ∴c2(a2-b2)=(a2+b2)(a2-b2) (B)
    ∴c2=a2+b2(C)
    ∴△ABC是直角三角形
    問:(1)上述解題過程,從哪一步開始出現(xiàn)錯(cuò)誤?請(qǐng)寫出該步的代號(hào):
    ;
    (2)錯(cuò)誤的原因?yàn)椋?!--BA-->
    ;
    (3)本題正確的結(jié)論為:

    發(fā)布:2024/12/23 18:0:1組卷:2502引用:25難度:0.6
  • 2.若a是整數(shù),則a2+a一定能被下列哪個(gè)數(shù)整除(  )

    發(fā)布:2024/12/24 6:30:3組卷:385引用:7難度:0.6
  • 3.閱讀理解:
    能被7(或11或13)整除的特征:如果一個(gè)自然數(shù)末三位所表示的數(shù)與末三位以前的數(shù)字所表示的數(shù)之差(大數(shù)減小數(shù))是7(或11或13)的倍數(shù),則這個(gè)數(shù)就能被7(或11或13)整除.
    如:456533,533-456=77,77是7的11倍,所以,456533能被7整除.又如:345548214,345548-214=345334,345-334=11,11是11的1倍,所以,345548214能被11整除.
    (1)用材料中的方法驗(yàn)證67822615是7的倍數(shù)(寫明驗(yàn)證過程);
    (2)若對(duì)任意一個(gè)七位數(shù),末三位所表示的數(shù)與末三位以前的數(shù)字所表示的數(shù)之差(大數(shù)減小數(shù))是11的倍數(shù),證明這個(gè)七位數(shù)一定能被11整除.

    發(fā)布:2025/1/5 8:0:1組卷:121引用:3難度:0.4
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正