定義:如果一個三角形中有兩個內(nèi)角α,β滿足α+2β=90°,那我們稱這個三角形為“近直角三角形”.
(1)若△ABC是“近直角三角形”,∠B>90°,∠C=50°,則∠A=2020度;
(2)如圖1,在Rt△ABC中,∠BAC=90°,AB=3,AC=4.若BD是∠ABC的平分線,
①求證:△BDC是“近直角三角形”;
②在邊AC上是否存在點(diǎn)E(異于點(diǎn)D),使得△BCE也是“近直角三角形”?若存在,請求出CE的長;若不存在,請說明理由.
(3)如圖2,在Rt△ABC中,∠BAC=90°,點(diǎn)D為AC邊上一點(diǎn),以BD為直徑的圓交BC于點(diǎn)E,連接AE交BD于點(diǎn)F,若△BCD為“近直角三角形”,且AB=5,AF=3,求tan∠C的值.

【考點(diǎn)】圓的綜合題.
【答案】20
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:1915引用:5難度:0.1
相似題
-
1.如圖1,直線l:y=-
x+b與x軸交于點(diǎn)A(4,0),與y軸交于點(diǎn)B,點(diǎn)C是線段OA上一動點(diǎn)(0<AC<34).以點(diǎn)A為圓心,AC長為半徑作⊙A交x軸于另一點(diǎn)D,交線段AB于點(diǎn)E,連接OE并延長交⊙A于點(diǎn)F.165
(1)求直線l的函數(shù)表達(dá)式和tan∠BAO的值;
(2)如圖2,連接CE,當(dāng)CE=EF時,
①求證:△OCE∽△OEA;
②求點(diǎn)E的坐標(biāo);
(3)當(dāng)點(diǎn)C在線段OA上運(yùn)動時,求OE?EF的最大值.發(fā)布:2025/6/20 11:30:2組卷:5310引用:10難度:0.1 -
2.已知到直線l的距離等于a的所有點(diǎn)的集合是與直線l平行且距離為a的兩條直線l1、l2(如圖①).
(1)在圖②的平面直角坐標(biāo)系中,畫出到直線y=x+2的距離為1的所有點(diǎn)的集合的圖形.并寫出該圖形與y軸交點(diǎn)的坐標(biāo).2
(2)試探討在以坐標(biāo)原點(diǎn)O為圓心,r為半徑的圓上,到直線y=x+2的距離為1的點(diǎn)的個數(shù)與r的關(guān)系.2
(3)如圖③,若以坐標(biāo)原點(diǎn)O為圓心,2為半徑的圓上只有兩個點(diǎn)到直線y=x+b的距離為1,則b的取值范圍為 .發(fā)布:2025/6/21 6:0:2組卷:515引用:9難度:0.5 -
3.已知:△ABC內(nèi)接于⊙O,AB=AC,過B作BE⊥AC于點(diǎn)E,交⊙O于F,連CF.
(1)如圖1,求證:BE=FC+EE;
(2)如圖2,過B作BH⊥AF垂足為H,交AC于點(diǎn)G,求證:BG=BC;
(3)如圖3,在(2)的條件下,連接CH,若CH∥AB,CE=1,求AB的長.發(fā)布:2025/6/20 10:30:1組卷:14引用:1難度:0.2