如圖1,已知等邊△ABC,點D在BC邊上,∠BAD=α(0°<α<30°),點E是點D關(guān)于直線AB的對稱點,點F在直線AC上,滿足EF=AD.
(1)求∠AFE的度數(shù);(用含有α的代數(shù)式表示)
(2)探究AF,BD,DC滿足的等量關(guān)系,并證明;
(3)如圖2,若點D在CB的延長線上,其余條件不變,直接寫出AF,BD,DC滿足的等量關(guān)系.

【考點】幾何變換綜合題.
【答案】(1)60°+α;(2)AF+BD=DC;(3)AF=BD+DC.
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/25 2:0:8組卷:264引用:5難度:0.3
相似題
-
1.【發(fā)現(xiàn)奧秘】
(1)如圖1,在等邊三角形ABC中,AB=2,點E是△ABC內(nèi)一點,連接AE,EC,BE,分別將AC,EC繞點C順時針旋轉(zhuǎn)60°得到DC,F(xiàn)C,連接AD,DF,EF.當(dāng)B,E,F(xiàn),D四個點滿足 時,BE+AE+CE的值最小,最小值為 .
【解法探索】
(2)如圖2,在△ABC中,∠ACB=90°,AC=BC,點P是△ABC內(nèi)一點,連接PA,PB,PC,請求出當(dāng)PA+PB+PC的值最小時∠BCP的度數(shù),并直接寫出此時PA:PB:PC的值.(提示:分別將PC,AC繞點C順時針旋轉(zhuǎn)60°得到DC,EC,連接PD,DE,AE)
【拓展應(yīng)用】
(3)在△ABC中,∠ACB=90°,∠BAC=30°,BC=2,點P是△ABC內(nèi)一點,連接PA,PB,PC,直接寫出當(dāng)PA+PB+PC的值最小時,PA:PB:PC的值.發(fā)布:2025/5/26 0:30:1組卷:232引用:1難度:0.4 -
2.下面是某數(shù)學(xué)興趣小組對一個數(shù)學(xué)問題作的探究活動:
問題:
如圖1,已知,∠MON=60°,點A在邊OM上,點P是邊ON上一動點,以線段AP為斜邊作Rt△ACP,AC=PC,∠ACP=90°(C和O在AP的兩側(cè)),連接OC,將線段OC繞C逆時針旋轉(zhuǎn)90°至BC,連接OB.
A.SSS
B.SAS
C.AAS
D.ASA
(2)如圖2,小穎同學(xué)作BD⊥ON于D,她認(rèn)為OA與BD存在某種數(shù)量關(guān)系,那么OA與BD是否有數(shù)量關(guān)系?如果有數(shù)量關(guān)系,請你寫出OA與BD的數(shù)量關(guān)系并說明理由;
(3)如圖1,小華說,當(dāng)OA=2,當(dāng)△AOP是直角三角形時,可求出OB2的值,請你直接寫出OB2的值.發(fā)布:2025/5/25 22:30:2組卷:142引用:2難度:0.1 -
3.如圖1,在等腰直角三角形ABC中,∠BAC=90°,點E,F(xiàn)分別為AB,AC的中點,H為線段EF上一動點(不與點E,F(xiàn)重合),將線段AH繞點A逆時針方向旋轉(zhuǎn)90°得到AG,連接GC,HB.
(1)證明:△AHB≌△AGC;
(2)如圖2,連接GF,HG,HG交AF于點Q.①證明:在點H的運動過程中,總有∠HFG=90°;②若AG=QG,AB=AC=4,求EH的長度.發(fā)布:2025/5/26 1:0:1組卷:181引用:1難度:0.3