已知函數(shù)f(x)=lnx+12x2-ax.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若f(x)有兩個(gè)極值點(diǎn)x1,x2,證明;f(x1)-f(x2)x1-x2<2-a2.
f
(
x
)
=
lnx
+
1
2
x
2
-
ax
f
(
x
1
)
-
f
(
x
2
)
x
1
-
x
2
<
2
-
a
2
【答案】(1)當(dāng)a≤2時(shí),f(x)在(0,+∞)上單調(diào)遞增,
當(dāng)a>2時(shí),f(x)在和上單調(diào)遞增,f(x)在上單調(diào)遞減.
(2)證明見(jiàn)解析.
當(dāng)a>2時(shí),f(x)在
(
0
,
a
-
a
2
-
4
2
)
(
a
+
a
2
-
4
2
,
+
∞
)
(
a
-
a
2
-
4
2
,
a
+
a
2
-
4
2
)
(2)證明見(jiàn)解析.
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:136引用:3難度:0.5
相似題
-
1.已知函數(shù)f(x)=(x-a)lnx(a∈R),它的導(dǎo)函數(shù)為f'(x).
(1)當(dāng)a=1時(shí),求f'(x)的零點(diǎn);
(2)若函數(shù)f(x)存在極小值點(diǎn),求a的取值范圍.發(fā)布:2024/12/29 13:0:1組卷:279引用:8難度:0.4 -
2.若函數(shù)
有兩個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍為( ?。?/h2>f(x)=e2x4-axex發(fā)布:2024/12/29 13:30:1組卷:125引用:4難度:0.5 -
3.定義:設(shè)f'(x)是f(x)的導(dǎo)函數(shù),f″(x)是函數(shù)f'(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.經(jīng)過(guò)探究發(fā)現(xiàn):任何一個(gè)三次函數(shù)都有“拐點(diǎn)”且“拐點(diǎn)”就是三次函數(shù)圖像的對(duì)稱中心,已知函數(shù)
的對(duì)稱中心為(1,1),則下列說(shuō)法中正確的有( ?。?/h2>f(x)=ax3+bx2+53(ab≠0)發(fā)布:2024/12/29 13:30:1組卷:185引用:7難度:0.5