閱讀下列題目的解題過程:
已知a、b、c為△ABC的三邊長,且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀.
解:∵a2c2-b2c2=a4-b4(A)
∴c2(a2-b2)=(a2+b2)(a2-b2) (B)
∴c2=a2+b2(C)
∴△ABC是直角三角形
問:(1)上述解題過程,從哪一步開始出現(xiàn)錯(cuò)誤?請寫出該步的代號:CC;
(2)錯(cuò)誤的原因?yàn)椋?!--BA-->沒有考慮a=b的情況沒有考慮a=b的情況;
(3)本題正確的結(jié)論為:△ABC是等腰三角形或直角三角形△ABC是等腰三角形或直角三角形.
【考點(diǎn)】因式分解的應(yīng)用;勾股定理的逆定理.
【答案】C;沒有考慮a=b的情況;△ABC是等腰三角形或直角三角形
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/12/23 18:0:1組卷:2492引用:25難度:0.6
相似題
-
1.已知x-y=
,xy=12,則x2y-xy2的值是( ?。?/h2>43發(fā)布:2024/12/23 11:30:2組卷:435引用:2難度:0.7 -
2.我們常利用數(shù)形結(jié)合思想探索了整式乘法的一些法則和公式.類似地,我們可以借助一個(gè)棱長為a的大正方體進(jìn)行以下探索:
(1)在大正方體一角截去一個(gè)棱長為b(b<a)的小正方體,如圖1所示,則得到的幾何體的體積為 .
(2)將圖1中的幾何體分割成三個(gè)長方體①、②、③,如圖2所示,因?yàn)锽C=a,AB=a-b,CF=b,所以長方體①的體積為ab(a-b),類似地,長方體②的體積為 ,長方體③的體積為 ;(結(jié)果不需要化簡)
(3)將表示長方體①、②、③的體積的式子相加,并將得到的多項(xiàng)式分解因式,結(jié)果為 .
(4)用不同的方法表示圖1中幾何體的體積,可以得到的等式為 .
(5)已知a-b=4,ab=2,求a3-b3的值.發(fā)布:2024/12/23 14:0:1組卷:275引用:3難度:0.4 -
3.如果一個(gè)正整數(shù)能表示為兩個(gè)連續(xù)的偶數(shù)的平方差,那么稱這個(gè)正整數(shù)為“神秘?cái)?shù)”.如果4=22-02,12=42-22,20=62-42,因此4,12,20都是“神秘?cái)?shù)”.
(1)28和2020這兩個(gè)數(shù)是“神秘?cái)?shù)”嗎?為什么?
(2)設(shè)兩個(gè)連續(xù)偶數(shù)為2k和2k+2(其中k取非負(fù)整數(shù)),由這兩個(gè)連續(xù)偶數(shù)構(gòu)造的“神秘?cái)?shù)”是4的倍數(shù)嗎?為什么?
(3)兩個(gè)連續(xù)的奇數(shù)的平方差(取正整數(shù))是“神秘?cái)?shù)”嗎?為什么?發(fā)布:2024/12/20 7:30:1組卷:336引用:5難度:0.9
把好題分享給你的好友吧~~