綜合與實(shí)踐:數(shù)學(xué)是以數(shù)量關(guān)系和空間形式為主要研究對(duì)象的科學(xué),數(shù)學(xué)實(shí)踐活動(dòng)有利于我們?cè)趫D形運(yùn)動(dòng)變化的過(guò)程中去發(fā)現(xiàn)其中的位置關(guān)系和數(shù)量關(guān)系,讓我們?cè)趯W(xué)習(xí)與探索中發(fā)現(xiàn)數(shù)學(xué)的美,體會(huì)數(shù)學(xué)實(shí)踐活動(dòng)帶給我們的樂(lè)趣.
轉(zhuǎn)一轉(zhuǎn):如圖1,在矩形ABCD中,點(diǎn)E,F(xiàn),G分別為邊BC,AB,AD的中點(diǎn),連接EF,DF,H為DF的中點(diǎn),連接GH.將△BEF繞點(diǎn)B旋轉(zhuǎn),線段DF,GH和CE的位置和長(zhǎng)度也隨之變化.

(1)圖2中,AB=BC,此時(shí)點(diǎn)E落在AB的延長(zhǎng)線上,點(diǎn)F落在線段BC上,連接AF,請(qǐng)直接寫出GH與CE之間的數(shù)量關(guān)系:GH=12CEGH=12CE.
(2)圖3中,AB=4,BC=6,求GHCE的值.
剪一剪,折一折:(3)在(2)的條件下,連接圖3中矩形的對(duì)角線AC,并沿對(duì)角線AC剪開(kāi),得到△ABC(如圖4).點(diǎn)M,N分別在AC,BC上,連接MN,將△CMN沿MN翻折,使點(diǎn)C的對(duì)應(yīng)點(diǎn)P落在AB的延長(zhǎng)線上,若PM平分∠APN,則CM的長(zhǎng)為 2117521175.
1
2
1
2
GH
CE
2
117
5
2
117
5
【考點(diǎn)】四邊形綜合題.
【答案】GH=CE;
1
2
2
117
5
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:154引用:1難度:0.3
相似題
-
1.將正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)α°到正方形AEFG.
(1)如圖1,當(dāng)0°<α<90°時(shí),EF與CD相交于點(diǎn)H.求證:DH=EH;
(2)如圖2,當(dāng)0°<α<90°,點(diǎn)F、D、B正好共線時(shí),
①求∠AFB度數(shù);
②若正方形ABCD的邊長(zhǎng)為1,求CH的長(zhǎng):
(3)連接DE,EC,F(xiàn)C.如圖3,正方形AEFG在旋轉(zhuǎn)過(guò)程中,是否存在實(shí)數(shù)m使AE2=DE2+mFC2-EC2總成立?若存在,求m的值;若不存在,請(qǐng)說(shuō)明理由.發(fā)布:2025/6/8 13:30:1組卷:67引用:1難度:0.2 -
2.定義:四邊形ABCD中,將對(duì)角線AC和BD的平方和,即AC2+BD2的值稱為四邊形ABCD的“特征數(shù)”.
(1)①在菱形ABCD中,AB=4,∠BAD=60°,則菱形ABCD的“特征數(shù)”=;
②正方形EFGH的“特征數(shù)”等于16,則邊長(zhǎng)=;
(2)平行四邊形ABCD中,AB=a,BC=b,試證明:平行四邊形ABCD的“特征數(shù)”為2a2+2b2;
(3)利用(2)的結(jié)論解決下列問(wèn)題:
平行四邊形ABCD中,,BC=6,且AC?BD=60,AC<BD,試求AC和BD的長(zhǎng)度.AB=42發(fā)布:2025/6/8 15:0:1組卷:373引用:3難度:0.2 -
3.如圖,矩形ABCD中,AB=4,AD=8,E在AD上,DE=3,點(diǎn)P從點(diǎn)B出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿著B(niǎo)C邊向終點(diǎn)C運(yùn)動(dòng),連接PE,設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒.
(1)過(guò)P作PF⊥AD,垂足為F,用含t的式子表示:EF=,PC=;
(2)當(dāng)t=2時(shí),判斷△PEC是否是直角三角形,并說(shuō)明理由;
(3)當(dāng)∠PEC=∠DEC時(shí),求t的值.發(fā)布:2025/6/8 12:30:1組卷:43引用:3難度:0.4