如圖,矩形ABCD中,AB=4,AD=3,點(diǎn)E在BC上運(yùn)動,將AE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得到AF,旋轉(zhuǎn)角等于∠BAC,連接CF.

(1)當(dāng)點(diǎn)E在BC上時(shí),作FM⊥AC,垂足為M,求證△ABE≌△AMF;
(2)當(dāng)AE=32時(shí),求CF的長;
(3)連接DF,點(diǎn)E從點(diǎn)B運(yùn)動到點(diǎn)C的過程中,試探究DF的最小值.
AE
=
3
2
【考點(diǎn)】四邊形綜合題.
【答案】(1)見解析;
(2);
(3).
(2)
3
(3)
11
5
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/4 6:0:10組卷:42引用:2難度:0.5
相似題
-
1.如圖,點(diǎn)P是正方形ABCD對角線AC上一動點(diǎn),點(diǎn)E在射線BC上,且PE=PB,連接PD,O為AC中點(diǎn).
(1)如圖1,當(dāng)點(diǎn)P在線段OA上時(shí),試猜想PE與PD的數(shù)量關(guān)系和位置關(guān)系.
(2)如圖2,當(dāng)點(diǎn)P在線段OC上時(shí),(1)中的猜想還成立嗎?請說明理由.
(3)如圖2,試用等式來表示PB、BC、CE之間的數(shù)量關(guān)系:.發(fā)布:2025/6/8 18:0:1組卷:53引用:1難度:0.1 -
2.按要求回答下列問題:
發(fā)現(xiàn)問題.
(1)如圖(1),在正方形ABCD中,點(diǎn)E,F(xiàn)分別是BC,CD邊上的動點(diǎn),且∠EAF=45°,易證:EF=DF+BE.(不必證明);
(2)類比延伸
①如圖(2),在正方形ABCD中,如果點(diǎn)E,F(xiàn)分別是邊BC,CD延長線上的動點(diǎn),且∠EAF=45°,則(1)中的結(jié)論還成立嗎?請寫出證明過程;
②如圖(3),如果點(diǎn)E,F(xiàn)分別是邊BC,CD延長線上的動點(diǎn),且∠EAF=45°,則EF,BE,DF之間的數(shù)量關(guān)系是 .(不要求證明)
(3)拓展應(yīng)用:如圖(1),若正方形的ABCD邊長為6,,求EF的長.AE=35發(fā)布:2025/6/8 18:30:1組卷:235引用:4難度:0.1 -
3.定義:四邊形ABCD中,將對角線AC和BD的平方和,即AC2+BD2的值稱為四邊形ABCD的“特征數(shù)”.
(1)①在菱形ABCD中,AB=4,∠BAD=60°,則菱形ABCD的“特征數(shù)”=;
②正方形EFGH的“特征數(shù)”等于16,則邊長=;
(2)平行四邊形ABCD中,AB=a,BC=b,試證明:平行四邊形ABCD的“特征數(shù)”為2a2+2b2;
(3)利用(2)的結(jié)論解決下列問題:
平行四邊形ABCD中,,BC=6,且AC?BD=60,AC<BD,試求AC和BD的長度.AB=42發(fā)布:2025/6/8 15:0:1組卷:373引用:3難度:0.2