如圖,已知四棱錐P-ABCD的底面ABCD是邊長為1的正方形,PD⊥底面ABCD,且PD=2.
(1)若點E、F分別在棱PB、AD上,且PE=4EB,DF=4FA,求證:EF⊥平面PBC;
(2)若點G在線段PA上,且三棱錐G-PBC的體積為14,試求線段PG的長.
PE
EB
DF
FA
1
4
【考點】直線與平面垂直;棱柱、棱錐、棱臺的體積.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/27 14:0:0組卷:89引用:4難度:0.1
相似題
-
1.如圖,AB為圓O的直徑,點E、F在圓O上,且AB∥EF,矩形ABCD所在的平面和圓O所在的平面互相垂直,且AB=2,AD=EF=1.
(1)求證:AF⊥平面CBF.
(2)設(shè)FC的中點為M,求證:OM∥平面DAF.
(3)求四棱錐F-ABCD的體積.發(fā)布:2025/1/20 8:0:1組卷:160引用:11難度:0.1 -
2.如圖,一簡單組合體的一個面ABC內(nèi)接于圓O,AB是圓O的直徑,四邊形DCBE為平行四邊形,且DC⊥平面ABC.
(1)證明:BC⊥平面ACD;
(2)若AB=2,BC=1,tan∠EAB=,試求該簡單組合體的體積V.32發(fā)布:2025/1/20 8:0:1組卷:25引用:1難度:0.5 -
3.如圖,AB為圓O的直徑,點C為圓O上異于A、B的一點,PA⊥平面ABC,點A在PB、PC上的射影分別為點E、F.
(1)求證:PB⊥平面AFE;
(2)若AB=4,PA=3,BC=2,求三棱錐C-PAB的體積與此三棱錐的外接球(即點P、A、B、C都在此球面上)的體積之比.發(fā)布:2025/1/20 8:0:1組卷:44引用:2難度:0.3
相關(guān)試卷