如圖,在正方形ABCD中,AB,BC的中點分別為E,F(xiàn),連接DE,AF交于點G,連接CG,CH平分∠DCG交DE于H.
(1)探索AF與DE的關(guān)系;
(2)求證:點H為DG中點;
(3)求GFCF的值.
GF
CF
【答案】(1)AF=DE,AF⊥DE,理由見解答過程;
(2)證明見解答過程;
(3).
(2)證明見解答過程;
(3)
3
5
5
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/6/4 23:30:1組卷:2108引用:5難度:0.2
相似題
-
1.如圖,矩形ABCD中,AB=16,BC=12,E為BC邊的中點,點F在邊AB上,∠EDF=45°,則AF的長為 .
發(fā)布:2025/6/6 7:0:2組卷:520引用:5難度:0.6 -
2.如圖,在△ABC中,AC=3,BC=4,∠C=90°,過CB的中點D作DE⊥AD,交AB于點E,則EB的長為 .
發(fā)布:2025/6/6 13:30:1組卷:1254引用:4難度:0.4 -
3.閱讀下列材料并完成相應(yīng)的任務(wù)
等面積法是一種常用的、重要的數(shù)學(xué)解題方法.它是利用“同一個圖形的面積相等”、“分割圖形后各部分的面積之和等于原圖形的面積”、“同底等高或等底同高的兩個三角形面積相等”等性質(zhì)解決有關(guān)數(shù)學(xué)問題.在解題中,靈活運用等面積法解決相關(guān)問題,可以使解題思路清晰,解題過程簡便快捷.
如圖,矩形ABCD的邊AB上有一動點E,以EC為邊作平行四邊形ECFG,且邊FG過矩形的頂點D,在點E從點A移動到點B的過程中,平行四邊形ECFG的面積如何變化?
小亮的觀點:過點D作DH⊥CE于點H,連接DE,CE與DH的乘積始終等于CD?AD,所以平行四邊形ECFG的面積不變.
小明的觀點:在點E的運動過程中,CE的長度在變化,而CE與FG兩條平行線間的距離不變,所以平行四邊形ECFG的面積變化.
任務(wù):你認(rèn)為小亮和小明誰的觀點正確?正確的寫出完整的證明過程.發(fā)布:2025/6/6 8:30:1組卷:35引用:1難度:0.5