已知拋物線y=x2+(2m-4)x+2m-5交y軸于點B,交x軸于點C,拋物線頂點為A,點P是拋物線上的動點,其橫坐標為n.
(1)求證:拋物線與x軸一定有交點.
(2)當m=1時,
①當點P在x軸下方時,結(jié)合圖象直接寫出n的取值范圍;
②若點C在如圖1位置,當點P位于第四象限時,過點P分別作直線BC,y軸的垂線段PE,PF.求當n為何值時,PE+PF的長度最大.
(3)是否存在一定點D,無論m取何值,拋物線都經(jīng)過該定點?若存在,則以DA為邊作等腰直角三角形DAG,此時若點G恰好落在此拋物線的對稱軸上,直接寫出點G的坐標;若不存在.請說明理由.

【考點】二次函數(shù)綜合題.
【答案】(1)證明見解答;
(2)①-1<n<3;②n=;
(3)點G的坐標為:(0,0)或(0,1)或(-2,-1)或(-2,0).
(2)①-1<n<3;②n=
3
+
2
2
(3)點G的坐標為:(0,0)或(0,1)或(-2,-1)或(-2,0).
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/6 5:0:1組卷:61引用:1難度:0.3
相似題
-
1.如圖,拋物線y=ax2+
經(jīng)過△ABC的三個頂點,點A坐標為(-1,2),點B是點A關(guān)于y軸的對稱點,點C在x軸的正半軸上.94
(1)求該拋物線的函數(shù)關(guān)系表達式;
(2)點F為線段AC上一動點,過F作FE⊥x軸,F(xiàn)G⊥y軸,垂足分別為E、G,當四邊形OEFG為正方形時,求出F點的坐標.發(fā)布:2025/6/16 19:30:1組卷:730引用:9難度:0.4 -
2.如圖,已知拋物線y=ax2+bx+c過點A(6,0),B(-2,0),C(0,-3).
(1)求此拋物線的解析式;
(2)若點H是該拋物線第四象限的任意一點,求四邊形OCHA的最大面積;
(3)若點Q在x軸上,點G為該拋物線的頂點,且∠QGA=45°,求點Q的坐標.發(fā)布:2025/6/16 23:0:1組卷:401引用:5難度:0.5 -
3.如圖,直線y1=-x+3與x軸于交于點B,與y軸交于點C.拋物線y2=-x2+bx+c經(jīng)過B、C兩點,并與x軸另一個交點為A.
(1)求拋物線y2的解析式;
(2)若點M在拋物線上,且S△MOC=4S△AOC,求點M的坐標;
(3)設(shè)點P是線段BC上一動點,過P作PQ⊥x軸,交拋物線于點Q,求線段PQ長度的最大值.發(fā)布:2025/6/17 2:0:1組卷:1010引用:3難度:0.3