如圖所示,在平面直角坐標系中,點B的坐標為(4,8),過點B分別作BA⊥y軸,BC⊥x軸,得到一個長方形OABC,D為y軸上的一點,將長方形OABC沿著直線DM折疊,使得點A與點C重合,點B落在點F處,直線DM交BC于點E.
(1)直接寫出點D的坐標 (0,3)(0,3);
(2)若點P為x軸上一點,是否存在點P使△PDE的周長最?。咳舸嬖?,請求出P點的坐標;若不存在,請說明理由.
(3)在(2)的條件下,若Q點是線段DE上一點(不含端點),連接PQ,有一動點H從P點出,發(fā),沿線段PQ以每秒1個單位的速度運動到點Q,再沿著線段QE以每秒5個單位長度的速度運動到點E后停止,請求出點H在整個運動過程中所用的最少時間,并寫出此時點Q的坐標.
5
【考點】四邊形綜合題.
【答案】(0,3)
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2025/6/7 0:30:1組卷:78引用:1難度:0.1
相似題
-
1.如圖,已知四邊形ABCD為正方形,AB=4,點E為對角線AC上一動點,連接DE、過點E作EF⊥DE.交BC于點F,以DE、EF為鄰邊作矩形DEFG,連接CG.
(1)求證:矩形DEFG是正方形;
(2)探究:CE+CG的值是否為定值?若是,請求出這個定值;若不是,請說明理由.
(3)若F點恰為BC中點,求CG的長度.發(fā)布:2025/6/7 11:0:1組卷:236引用:2難度:0.3 -
2.已知點A(1,a),將線段OA平移至線段CB(A的對應點是B點),B(b,0),a是m+6n的算術平方根,
=3,n=m2,且m<n,正數b滿足(b+1)2=16.4
(1)求出:A、B、C三點坐標.
(2)如圖1,連接AB、OC,求四邊形AOCB的面積;
(3)如圖2,若∠AOB=α,點P為y軸正半軸上一動點,試探究∠CPO與∠BCP之間的數量關系.發(fā)布:2025/6/7 11:30:1組卷:82引用:2難度:0.4 -
3.問題解決:如圖1,在矩形ABCD中,點E,F分別在AB,BC邊上,DE=AF,DE⊥AF于點G.
(1)求證:四邊形ABCD是正方形;
(2)延長CB到點H,使得BH=AE,判斷△AHF的形狀,并說明理由.
類比遷移:如圖2,在菱形ABCD中,點E,F分別在AB,BC邊上,DE與AF相交于點G,DE=AF,∠AED=60°,AE=6,BF=2,求DE的長.發(fā)布:2025/6/7 11:30:1組卷:3424引用:24難度:0.3