試卷征集
加入會員
操作視頻

如圖,在Rt△ABC中,∠ABC=90°,AC=5,BC=4,點D是邊AB的中點,動點P從點A出發(fā)以每秒1個單位的速度沿AC向終點C運動,過點P作PQ⊥AC交折線AB-BC于點Q(點Q不與點D重合),以PQ、QD為鄰邊構(gòu)造平行四邊形PQDM,設點P的運動時間為t秒.
(1)直接寫出AB的長.
(2)當點Q落在AB邊上時,用含t的代數(shù)式表示DQ的長.
(3)當平行四邊形PQDM為軸對稱圖形時求t的值.
(4)連接QM,當QM與Rt△ABC的某條邊平行時,直接寫出t的值.

【考點】四邊形綜合題
【答案】(1)3;
(2)
3
2
-
5
3
t
5
3
t
-
3
2
;
(3)
1
2
73
2
17
5
;
(4)
9
20
21
5
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/8/18 3:0:1組卷:42引用:2難度:0.5
相似題
  • 1.[問題提出]
    正多邊形內(nèi)任意一點到各邊距離之和與這個正多邊形的半徑R和中心角有什么關系?
    [問題探究]
    如圖①,△ABC是等邊三角形,半徑OA=R,∠AOB是中心角,P是△ABC內(nèi)任意一點,P到△ABC各邊距離PF、PE、PD分別為h1、h2、h3,設△ABC的邊長是a,面積為S.過點O作OM⊥AB.
    ∴OM=Rcos
    1
    2
    ∠AOB=Rcos60°,AM=Rsin
    1
    2
    ∠AOB=Rsin60°,AB=2AM=2Rsin60°
    ∴S△ABC=3S△AOB=3×
    1
    2
    AB×OM=3R2sin60°cos60°①
    ∵S△ABC又可以表示為
    1
    2
    a(h1+h2+h3)②
    聯(lián)立①②得
    1
    2
    a(h1+h2+h3)=3R2sin60°cos60°
    1
    2
    ×2Rsin60°(h1+h2+h3)=3R2sin60°cos60°
    ∴h1+h2+h3=3Rcos60°

    [問題解決]
    如圖②,五邊形ABCDE是正五邊形,半徑OA=R,∠AOB是中心角,P是△ABC內(nèi)任意一點,P到△ABC各邊距PH、PM、PN、PI、PL分別為h1、h2、h3、h4、h5,參照(1)的分析過程,探究h1+h2+h3+h4+h5的值與正五邊形ABCDE的半徑R及中心角的關系.
    [性質(zhì)應用]
    (1)正六邊形(半徑是R)內(nèi)任意一點P到各邊距離之和h1+h2+h3+h4+h5+h6=

    (2)如圖③,正n邊形(半徑是R)內(nèi)任意一點P到各邊距離之和h1+h2+hn-1+hn=

    發(fā)布:2025/5/24 8:0:1組卷:149引用:1難度:0.2
  • 2.在五邊形ABCDE中,四邊形ABCD是矩形,△ADE是以E為直角頂點的等腰直角三角形.CE與AD交于點G,將直線EC繞點E順時針旋轉(zhuǎn)45°交AD于點F.
    (1)求證:∠AEF=∠DCE;
    (2)判斷線段AB,AF,F(xiàn)C之間的數(shù)量關系,并說明理由;
    (3)若FG=CG,且AB=2,求線段BC的長.

    發(fā)布:2025/5/24 8:0:1組卷:328引用:2難度:0.2
  • 3.綜合與探究
    (1)如圖1,在正方形ABCD中,點E,F(xiàn)分別在邊BC,CD上,且AE⊥BF,請寫出線段AE與BF的數(shù)量關系,并證明你的結(jié)論.
    (2)【類比探究】
    如圖2,在矩形ABCD中,AB=3,AD=5,點E,F(xiàn)分別在邊BC,CD上,且AE⊥BF,請寫出線段AE與BF的數(shù)量關系,并證明你的結(jié)論.
    (3)【拓展延伸】
    如圖3,在Rt△ABC中,∠ABC=90°,D為BC中點,連接AD,過點B作BE⊥AD于點F,交AC于點E,若AB=3,BC=4,求BE的長.

    發(fā)布:2025/5/24 9:0:1組卷:760引用:4難度:0.1
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網(wǎng) | 應用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正