在平面直角坐標系中,點O為坐標原點,拋物線y=ax2+bx+3交x軸負半軸于點A,交x軸正半軸于點B,交y軸于點C,且A(-3,0),B(1,0)
(1)求這個拋物線的解析式;
(2)如圖1,點P為第三象限拋物線上的點,設點P的橫坐標為t,△PAC面積S1,求S1與t的函數(shù)解析式(直接寫出自變量t的取值范圍);
(3)如圖2,在(2)的條件下,Q為CA延長線上的一點,QB與AP交于點M,若S1=S△ABC,求S△QBCS△PBC-S△QMAS△BMP的最大值.
S
△
QBC
S
△
PBC
-
S
△
QMA
S
△
BMP
【考點】二次函數(shù)綜合題.
【答案】(1)y=-x2-2x+3;
(2),(t<-3);
(3)取最大值.
(2)
S
1
=
3
2
t
2
+
9
2
t
(3)
S
△
QBC
S
△
PBC
-
S
△
QMA
S
△
BMP
17
20
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/5/11 8:0:9組卷:213引用:1難度:0.3
相似題
-
1.如圖,拋物線y=-
x2+bx+c與x軸交于A(-1,0),B(4,0),與y軸交于點C.連接AC,BC,點P在拋物線上運動.12
(1)求拋物線的表達式;
(2)若點P在第四象限,點Q在PA的延長線上,當∠CAQ=∠CBA+45°時,求點P的坐標.發(fā)布:2025/6/7 20:0:2組卷:80引用:1難度:0.2 -
2.在平面直角坐標系xOy中,一次函數(shù)
的圖象經(jīng)過點B(4,0),交y軸于點A,二次函數(shù)y=x2+bx+c的圖象經(jīng)過點A,且對稱軸為直線x=-1.y=-34x+m
(1)請求出m,b,c的值;
(2)點C為拋物線的頂點,在y軸上是否存在點P,使得以點P、O、C為頂點的三角形是等腰三角形?若存在,直接寫出點P的坐標,不必說明理由;若不存在,請說明理由;
(3)將直線AB向下平移a個單位,使得直線AB與拋物線有且只有一個交點,求a的值;
(4)點D在y軸上,且位于點A下方,點M在二次函數(shù)的圖象上,點N在一次函數(shù)的圖象上,使得以點A、D、M、N為頂點的四邊形是菱形,求點M的坐標.發(fā)布:2025/6/8 1:0:1組卷:104引用:2難度:0.1 -
3.如圖①,定義:直線l:y=mx+n(m<0,n>0)與x,y軸分別相交于A,B兩點.將△AOB繞著點O逆時針旋轉(zhuǎn)90°得到△COD,過點A,B,D的拋物線P叫作直線l的“糾纏拋物線”,反之,直線l叫做拋物線P的“糾纏直線”,兩線“互為糾纏線”.
(1)已知直線l:y=-2x+2,則它的糾纏拋物線P的函數(shù)解析式是 .
(2)判斷y=-2x+2k與是否“互為糾纏線”并說明理由.y=-1kx2-x+2k
(3)如圖②,已知直線l:y=-2x+4,它的糾纏拋物線P的對稱軸與CD相交于點E.點F在直線l上.點Q在拋物線P的對稱軸上,當以點C,E,Q,F(xiàn)為頂點的四邊形是以CE為一邊的平行四邊形時,直接寫出點Q的坐標.發(fā)布:2025/6/7 21:0:1組卷:47引用:1難度:0.3