勾股定理又稱為“畢達哥拉斯定理”,是一個有著悠悠4000多年歷史的重要幾何定理.它揭示了這樣一個事實:對任何一個直角三角形而言,以它的兩條直角邊的長度為邊長的正方形的面積之和,等于以斜邊的長度為邊長的正方形的面積.關(guān)于勾股定理,人們發(fā)現(xiàn)了400多種證明,甚至連美國總統(tǒng)也曾加入到證明一者的隊伍中.在眾多證明方法中,我國古代數(shù)學(xué)家劉徽給出的證明簡單直觀,耐人尋味(如圖所示)這個證明實際上給出了一個通過有限次直線切割,將兩個正方形拼補為一個更大的正方形的方法.設(shè)兩個小正方形的邊長分別為3和4,按照劉徽的方法,這兩個小正方形被切割成5部分,請分別計算出這5部分的面積,并按從小到大的順序?qū)懺谙旅妫?!--BA-->38,278,458,6,77838,278,458,6,778.

3
8
27
8
45
8
77
8
3
8
27
8
45
8
77
8
【考點】等積變形.
【答案】,,,6,
3
8
27
8
45
8
77
8
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:152引用:5難度:0.3
相似題
-
1.在如圖的長方形內(nèi),有四對正方形(標(biāo)號相同的兩個正方形為一對),每一對是相同的正方形,那么中間這個小正方形(陰影部分)的面積為.
發(fā)布:2025/4/20 21:0:1組卷:118引用:3難度:0.5 -
2.如圖所示的四邊形的面積等于.
發(fā)布:2025/4/20 21:30:1組卷:110引用:4難度:0.5 -
3.如圖是一個直角梯形.請你畫一條線段,把它分成兩個形狀相同面積相等的四邊形.(請標(biāo)明表示線段位置的數(shù)據(jù)及符號或?qū)懗霎嫹ǎ?/h2>
發(fā)布:2025/4/20 21:30:1組卷:37引用:2難度:0.5