常用的因式分解的方法有提取公因式法、公式法,但有一部分多項(xiàng)式只單純用上述方法就無法分解,如x2-2xy+y2-16,我們細(xì)心觀察這個(gè)式子,會(huì)發(fā)現(xiàn)前三項(xiàng)符合完全平方公式,進(jìn)行變形后可以與第四項(xiàng)結(jié)合,再應(yīng)用平方差公式進(jìn)行分解,過程如下:x2-2xy+y2-16=(x-y)2-16=(x-y+4)(x-y-4).這種分解因式的方法叫分組分解法,利用這種分組的思想方法解決下列問題:
(1)1-4a2+4ab-b2;
(2)9a2+4b2-25m2-n2+12ab+10mn;
(3)已知三角形的三條邊長(zhǎng)分別為a、b、c,當(dāng)2a2+b2+c2-2a(b+c)=0,求a2+2ac4b2.
a
2
+
2
ac
4
b
2
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:104引用:1難度:0.5
相似題
-
1.閱讀下列題目的解題過程:
已知a、b、c為△ABC的三邊長(zhǎng),且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀.
解:∵a2c2-b2c2=a4-b4(A)
∴c2(a2-b2)=(a2+b2)(a2-b2) (B)
∴c2=a2+b2(C)
∴△ABC是直角三角形
問:(1)上述解題過程,從哪一步開始出現(xiàn)錯(cuò)誤?請(qǐng)寫出該步的代號(hào):;
(2)錯(cuò)誤的原因?yàn)椋?!--BA-->;
(3)本題正確的結(jié)論為:.發(fā)布:2024/12/23 18:0:1組卷:2501引用:25難度:0.6 -
2.若a是整數(shù),則a2+a一定能被下列哪個(gè)數(shù)整除( ?。?/h2>
發(fā)布:2024/12/24 6:30:3組卷:385引用:7難度:0.6 -
3.閱讀理解:
能被7(或11或13)整除的特征:如果一個(gè)自然數(shù)末三位所表示的數(shù)與末三位以前的數(shù)字所表示的數(shù)之差(大數(shù)減小數(shù))是7(或11或13)的倍數(shù),則這個(gè)數(shù)就能被7(或11或13)整除.
如:456533,533-456=77,77是7的11倍,所以,456533能被7整除.又如:345548214,345548-214=345334,345-334=11,11是11的1倍,所以,345548214能被11整除.
(1)用材料中的方法驗(yàn)證67822615是7的倍數(shù)(寫明驗(yàn)證過程);
(2)若對(duì)任意一個(gè)七位數(shù),末三位所表示的數(shù)與末三位以前的數(shù)字所表示的數(shù)之差(大數(shù)減小數(shù))是11的倍數(shù),證明這個(gè)七位數(shù)一定能被11整除.發(fā)布:2025/1/5 8:0:1組卷:121引用:3難度:0.4
把好題分享給你的好友吧~~