如圖1,已知在平面直角坐標系中,拋物線y=ax2+bx+3經過A(-1,0),B(3,0)兩點,且與y軸交于點C.
(1)求拋物線的解析式及頂點D的坐標;
(2)設△COB沿x軸正方向平移t(0<t≤3)個單位長度時,△COB與△CDB重疊部分的面積為S,求S與t之間的函數(shù)關系式,并指出t的取值范圍;
考生請注意:下面的(3),(4),(5)題為三選一的選做題,即只能選做其中一個題目,多答時只按作答的首題評分,切記喲!
(3)點P是x軸上的一個動點,過點P作直線l∥AC交拋物線于點Q,試探究:隨著P點的運動,在拋物線上是否存在點Q,使以點A、P、Q、C為頂點的四邊形是平行四邊形?若存在,請直接寫出符合條件的點Q的坐標;若不存在,請說明理由;
(4)設點Q是y軸右側拋物線上異于點B的點,過點Q作QP∥x軸交拋物線于另一點P,過P作PH⊥x軸,垂足為H,過Q作QG⊥x軸,垂足為G,則四邊形QPHG為矩形.試探究在點Q運動的過程中矩形QPHG能否成為正方形?若能,請直接寫出符合條件的點Q的坐標;若不能,請說明理由;
(5)試探究,在y軸右側的拋物線上是否存在一點Q,使△QDC是等腰三角形?若存在,請直接寫出符合條件的點Q坐標;若不存在,請說明理由.
【考點】二次函數(shù)綜合題.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:394引用:50難度:0.5
相似題
-
1.如圖,已知拋物線y=ax2+bx-2與x軸的兩個交點是A(4,0),B(1,0),與y軸的交點是C.
(1)求該拋物線的解析式;
(2)在直線AC上方的該拋物線上是否存在一點D,使得△DCA的面積最大?若存在,求出點D的坐標及△DCA面積的最大值;若不存在,請說明理由;
(3)設拋物線的頂點是F,對稱軸與AC的交點是N,P是在AC上方的該拋物線上一動點,過P作PM⊥x軸,交AC于M.若P點的橫坐標是m.問:
①m取何值時,過點P、M、N、F的平面圖形不是梯形?
②四邊形PMNF是否有可能是等腰梯形?若有可能,請求出此時m的值;若不可能,請說明理由.發(fā)布:2025/1/2 8:0:1組卷:82引用:1難度:0.5 -
2.如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點A、B、C、D分別是“果圓”與坐標軸的交點,拋物線的解析式為y=x2-2x-3,AB為半圓的直徑,則這個“果圓”被y軸截得的弦CD的長為.
發(fā)布:2024/12/23 17:30:9組卷:3634引用:37難度:0.4 -
3.如圖,將矩形OABC置于平面直角坐標系中,點A的坐標為(0,4),點C在x軸上,點D(3
,1)在BC上,將矩形OABC沿AD折疊壓平,使點B落在坐標平面內,設點B的對應點為點E.若拋物線y=ax2-45ax+10(a≠0且a為常數(shù))的頂點落在△ADE的內部,則a的取值范圍是( ?。?/h2>5發(fā)布:2024/12/26 1:30:3組卷:2661引用:7難度:0.7
把好題分享給你的好友吧~~