《幾何原本》中的幾何代數(shù)法是以幾何方法研究代數(shù)問題,這種方法是后西方數(shù)學(xué)家處理問題的重要依據(jù),通過這一原理,很多的代數(shù)公理或定理都能夠通過圖形實(shí)現(xiàn)證明,也稱之為無字證明.下圖是我國(guó)古代數(shù)學(xué)家趙爽創(chuàng)作的弦圖,弦圖由四個(gè)全等的直角三角形與一個(gè)小正方形拼成的一個(gè)大正方形.若直角三角形的直角邊長(zhǎng)分別為a和b,則該圖形可以完成的無字證明為( ?。?/h1>
【考點(diǎn)】基本不等式及其應(yīng)用.
【答案】B
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/27 14:0:0組卷:413引用:4難度:0.7