平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為x=4t2 y=4t
(t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=4sin(θ+π6).
(1)寫出曲線C1的極坐標(biāo)方程和曲線C2的直角坐標(biāo)方程;
(2)若射線OM:θ=α0(ρ≥0)平分曲線C2,且與曲線C1交于點(diǎn)A(異于O點(diǎn)),曲線C1上的點(diǎn)B滿足∠AOB=π2,求△AOB的面積S.
x = 4 t 2 |
y = 4 t |
ρ
=
4
sin
(
θ
+
π
6
)
∠
AOB
=
π
2
【考點(diǎn)】參數(shù)方程化成普通方程.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:144引用:6難度:0.5
相似題
-
1.直線l的極坐標(biāo)方程為θ=α(ρ∈R,ρ≠0),其中α∈[0,π),曲線C1的參數(shù)方程為
(t為參數(shù)),圓C2的普通方程為x2+y2+2x=costy=1+sintx=0.3
(1)求C1,C2的極坐標(biāo)方程;
(2)若l與C1交于點(diǎn)A,l與C2交于點(diǎn)B,當(dāng)|AB|=2時,求△ABC2的面積.發(fā)布:2024/10/20 2:0:1組卷:12引用:1難度:0.5 -
2.已知曲線的參數(shù)方程
(θ為參數(shù)),當(dāng)參數(shù)x=2sinθy=cos2θ時,對應(yīng)的點(diǎn)的坐標(biāo)是( ?。?/h2>θ=π6發(fā)布:2024/11/29 5:0:2組卷:7引用:1難度:0.7 -
3.將參數(shù)方程
(但為參數(shù))化為普通方程為( ?。?/h2>x=2+sinθy=sinθ發(fā)布:2024/11/29 5:0:2組卷:9引用:1難度:0.7
把好題分享給你的好友吧~~