如圖,正方形ABCD的邊長(zhǎng)為4,點(diǎn)E在AB邊上,BE=1,F(xiàn)為BC邊的中點(diǎn).將正方形截去一個(gè)角后得到一個(gè)五邊形AEFCD,點(diǎn)P在線段EF上運(yùn)動(dòng)(點(diǎn)P可與點(diǎn)E,點(diǎn)F重合),作矩形PMDN,其中M,N兩點(diǎn)分別在CD,AD邊上.
設(shè)CM=x,矩形PMDN的面積為S.
(1)DM=4-x4-x(用含x的式子表示),x的取值范圍是 0≤x≤10≤x≤1;
(2)求S與x的函數(shù)關(guān)系式;
(3)要使矩形PMDN的面積最大,點(diǎn)P應(yīng)在何處?并求最大面積.
【考點(diǎn)】四邊形綜合題.
【答案】4-x;0≤x≤1
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/6/20 10:0:1組卷:399引用:4難度:0.2
相似題
-
1.如圖直角坐標(biāo)系中直線AB與x軸正半軸、y軸正半軸交于A,B兩點(diǎn),已知B(0,4),∠BAO=30°,P,Q分別是線段OB,AB上的兩個(gè)動(dòng)點(diǎn),P從O出發(fā)以每秒3個(gè)單位長(zhǎng)度的速度向終點(diǎn)B運(yùn)動(dòng),Q從B出發(fā)以每秒8個(gè)單位長(zhǎng)度的速度向終點(diǎn)A運(yùn)動(dòng),兩點(diǎn)同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí)整個(gè)運(yùn)動(dòng)結(jié)束,設(shè)運(yùn)動(dòng)時(shí)間為t(秒).
(1)求線段AB的長(zhǎng),及點(diǎn)A的坐標(biāo);
(2)t為何值時(shí),△BPQ的面積為2;3
(3)若C為OA的中點(diǎn),連接QC,QP,以QC,QP為鄰邊作平行四邊形PQCD,
①t為何值時(shí),點(diǎn)D恰好落在坐標(biāo)軸上;
②是否存在時(shí)間t使x軸恰好將平行四邊形PQCD的面積分成1:3的兩部分,若存在,直接寫(xiě)出t的值.發(fā)布:2025/6/20 23:0:1組卷:1027引用:6難度:0.3 -
2.如圖,在梯形ABCD中,AD∥BC,∠B=90°,AB=10cm,AD=20cm,BC=24cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿AD方向向點(diǎn)D以1cm/s的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C開(kāi)始沿CB方向向點(diǎn)B以3cm/s的速度運(yùn)動(dòng).P、Q兩點(diǎn)同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t,當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)隨之停止運(yùn)動(dòng).
(1)當(dāng)t=3時(shí),PD=,CQ=.
(2)當(dāng)t為何值時(shí),四邊形CDPQ是平行四邊形?請(qǐng)說(shuō)明理由.
(3)在運(yùn)動(dòng)過(guò)程中,設(shè)四邊形CDPQ的面積為S,寫(xiě)出S與t的函數(shù)關(guān)系式,并求當(dāng)t為何值時(shí),S的值最大,最大值是多少?發(fā)布:2025/6/21 2:0:1組卷:147引用:2難度:0.3 -
3.如圖,四邊形ABCD是正方形,E是線段BC上一點(diǎn),連接AE,將AE繞點(diǎn)E順時(shí)針旋轉(zhuǎn)90°,得到EF,過(guò)點(diǎn)F作FG⊥CD于點(diǎn)G.
(1)如圖①,當(dāng)E是BC的中點(diǎn)時(shí),請(qǐng)直接寫(xiě)出線段FG和BE的數(shù)量關(guān)系;
(2)如圖②,當(dāng)E不是BC的中點(diǎn)時(shí),(1)中的結(jié)論是否成立?請(qǐng)說(shuō)明理由;
(3)若BC=4,CE=2,EF與CD交于點(diǎn)P,請(qǐng)求出CP的長(zhǎng).發(fā)布:2025/6/20 12:0:2組卷:32引用:1難度:0.1