定義np1+p2+…+pn為n個(gè)正數(shù)p1,p2,…pn的“均倒數(shù)”.若已知數(shù)列{an}的前n項(xiàng)的“均倒數(shù)”為12n+1,又bn=an+14,則1b1b2+1b2b3+…+1b10b11=( ?。?/h1>
n
p
1
+
p
2
+
…
+
p
n
1
2
n
+
1
b
n
=
a
n
+
1
4
1
b
1
b
2
+
1
b
2
b
3
+
…
+
1
b
10
b
11
【考點(diǎn)】類比推理.
【答案】C
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/27 14:0:0組卷:300引用:51難度:0.7
相似題
-
1.函數(shù)y=tanx滿足tan(x
)=+π4由該等式也能推證出y=tanx的周期為π,已知函數(shù)y=f(x)滿足f(x+a)=1+tanx1-tanx,x∈R.a(chǎn)為非零的常數(shù),根據(jù)上述論述我們可以類比出函數(shù)f(x)的周期為.1+f(x)1-f(x)發(fā)布:2025/1/6 8:0:1組卷:5引用:1難度:0.7 -
2.已知
tan(x+π4)=1+tanx1-tanx,那么函數(shù)y=tanx的周期為π.類比可推出:已知x∈R且(x≠kπ+π4),那么函數(shù)y=f(x)的周期是( ?。?/h2>f(x+π)=1+f(x)1-f(x)發(fā)布:2025/1/6 8:0:1組卷:11引用:1難度:0.7 -
3.若
,x≠kπ+π4,則y=tanx的周期為π.類比可推出:設(shè)x∈R且tan(x+π4)=1+tanx1-tanx,則y=f(x)的周期是( ?。?/h2>f(x+π)=1+f(x)1-f(x)發(fā)布:2025/1/6 8:0:1組卷:36引用:1難度:0.5