已知函數(shù)f(x)=2sinxcos(x-π3)-32,x∈R.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在區(qū)間[π2,π]上的最大值和最小值;
(Ⅲ)若f(x0+π24)=-1010,x0∈[π4,7π8],求cos2x0的值.
f
(
x
)
=
2
sinxcos
(
x
-
π
3
)
-
3
2
[
π
2
,
π
]
f
(
x
0
+
π
24
)
=
-
10
10
x
0
∈
[
π
4
,
7
π
8
]
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:357引用:2難度:0.6
相似題
-
1.已知函數(shù)f(x)=cos2x+asinx-1,若不等式|f(x)|≤1任意的x∈[0,π]恒成立,則實(shí)數(shù)a的取值范圍為 .
發(fā)布:2024/12/9 7:30:1組卷:210引用:4難度:0.5 -
2.已知函數(shù)
.f(x)=4sin2(π4+x2)sinx+(cosx+sinx)(cosx-sinx)-1
(1)求f(x)的對(duì)稱(chēng)中心;
(2)設(shè)常數(shù)ω>0,若函數(shù)f(ωx)在區(qū)間上是增函數(shù),求ω的取值范圍;[-π2,2π3]
(3)若函數(shù)在區(qū)間g(x)=12[f(2x)+af(x)-af(π2-x)-a]-1上的最大值為2,求a的值.[-π4,π2]發(fā)布:2024/12/1 14:0:1組卷:435引用:5難度:0.5 -
3.若
,則f(x)在f(x)=sin2x+3sinxcosx-12上的最大值為( )[π6,23π]發(fā)布:2024/12/17 19:30:3組卷:12引用:1難度:0.7
把好題分享給你的好友吧~~