如圖,已知拋物線y=ax2+bx+c與x軸交于點A(1,0)和點B(-3,0),與y軸交于點C(0,3).
(1)求拋物線的函數(shù)解析式.
(2)點N為第二象限內(nèi)拋物線上的動點,求△BCN面積的最大值及此時點N的坐標(biāo).
(3)若點Q在拋物線的對稱軸上,拋物線上是否存在點P,使得以A、B、Q、P四點為頂點的四邊形為平行四邊形?若存在,求出滿足條件的點P的坐標(biāo);若不存在,請說明理由.

【考點】二次函數(shù)綜合題.
【答案】(1)y=-x2-2x+3;
(2)△BCN面積的最大值為,N(-,);
(3)存在,(-1,4)或(3,-12)或(-5,-12).
(2)△BCN面積的最大值為
27
8
3
2
15
4
(3)存在,(-1,4)或(3,-12)或(-5,-12).
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:192引用:1難度:0.2
相似題
-
1.已知拋物線y=x2+tx-t-1(t>0)過點(h,-4),交x軸于A,B兩點(點A在點B左側(cè)),交y軸于點C,且對于任意實數(shù)m,恒有m2+tm-t-1≥-4成立.
(1)求拋物線的解析式;
(2)在拋物線的對稱軸上,是否存在點M,使得∠BMC=∠BAC,若存在,求出點M的坐標(biāo),若不存在,請說明理由;
(3)若P1(n-2,y1),P2(n,y2),P3(n+2,y3)三點都在拋物線上且總有y3>y1>y2,請直接寫出n的取值范圍.發(fā)布:2025/5/23 14:30:1組卷:453引用:3難度:0.3 -
2.如圖,拋物線y=ax2-8ax+12a(a<0)與x軸交于A,B兩點(點A在點B的左側(cè)),拋物線上另有一點C在第一象限,滿足∠ACB為直角,且使∠OCA=∠OBC.
(1)求線段OC的長;
(2)求該拋物線的函數(shù)關(guān)系式;
(3)在拋物線的對稱軸上是否存在一點P,使得△BCP是以BC為腰的等腰三角形?若存在,求出所有符合條件的點P的坐標(biāo);若不存在,請說明理由.發(fā)布:2025/5/23 15:0:2組卷:500引用:1難度:0.2 -
3.已知拋物線y=ax2+bx+c(a≠0)的頂點D及與y軸的交點C都在直線y=x+1上,對稱軸是直線x=1.
(1)求拋物線的解析式;
(2)若在自變量x的值滿足t≤x≤t+2時,與其對應(yīng)的函數(shù)值y的最小值為-7,求此時t的值;
(3)設(shè)m為拋物線與x軸一個交點的橫坐標(biāo),求的值.m8+m4-20m2+6m3+14m+6發(fā)布:2025/5/23 15:0:2組卷:431引用:1難度:0.4
相關(guān)試卷