如圖1,拋物線y=a(x+2)(x-6)(a>0)與x軸交于C,D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左邊),與y軸負(fù)半軸交于點(diǎn)A.
(1)若△ACD的面積為16.
①求拋物線解析式;
②S為線段OD上一點(diǎn),過S作x軸的垂線,交拋物線于點(diǎn)P,將線段SC,SP繞點(diǎn)S順時(shí)針旋轉(zhuǎn)任意相同的角到SC1,SP1的位置,使點(diǎn)C,P的對(duì)應(yīng)點(diǎn)C1,P1都在x軸上方,C1C與P1S交于點(diǎn)M,P1P與x軸交于點(diǎn)N.求SNSM的最大值;
(2)如圖2,直線y=x-12a與x軸交于點(diǎn)B,點(diǎn)M在拋物線上,且滿足∠MAB=75°的點(diǎn)M有且只有兩個(gè),求a的取值范圍.

SN
SM
【考點(diǎn)】二次函數(shù)綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/26 14:0:2組卷:780引用:5難度:0.3
相似題
-
1.如圖,直線
與x軸、y軸分別交于點(diǎn)B、A,拋物線y=-x2+bx+c經(jīng)過點(diǎn)B,與y軸交于點(diǎn)C(0,4).y=-12x+2
(1)求拋物線的函數(shù)表達(dá)式;
(2)點(diǎn)P是x軸上方拋物線上的動(dòng)點(diǎn),過點(diǎn)P作PD⊥x軸于點(diǎn)D,若以點(diǎn)P、D、B為頂點(diǎn)的三角形與△AOB相似,求點(diǎn)P的坐標(biāo).發(fā)布:2025/5/24 1:0:1組卷:358引用:2難度:0.3 -
2.在平面直角坐標(biāo)系xOy中,拋物線y=
x2+bx+c過點(diǎn)A(-2,-1),B(0,-3).12
(1)求拋物線的解析式;
(2)平移拋物線,平移后的頂點(diǎn)為P(m,n)(m>0).
?。绻鸖△OBP=3,設(shè)直線x=k,在這條直線的右側(cè)原拋物線和新拋物線均呈上升趨勢(shì),求k的取值范圍;
ⅱ.點(diǎn)P在原拋物線上,新拋物線交y軸于點(diǎn)Q,且∠BPQ=120°,求點(diǎn)P的坐標(biāo).發(fā)布:2025/5/24 1:0:1組卷:3109引用:3難度:0.4 -
3.如圖1,拋物線y=ax2+3ax(a為常數(shù),a<0)與x軸交于O,A兩點(diǎn),點(diǎn)B為拋物線的頂點(diǎn),點(diǎn)D是線段OA上的一個(gè)動(dòng)點(diǎn),連接BD并延長(zhǎng)與過O,A,B三點(diǎn)的⊙P相交于點(diǎn)C,過點(diǎn)C作⊙P的切線交x軸于點(diǎn)E.
(1)①求點(diǎn)A的坐標(biāo);②求證:CE=DE;
(2)如圖2,連接AB,AC,BE,BO,當(dāng),∠CAE=∠OBE時(shí),a=-233
①求證:AB2=AC?BE;②求的值.1OD-1OE發(fā)布:2025/5/24 1:0:1組卷:575引用:1難度:0.3